

ГИД 2024 ПО ПРОДУКТАМ И СИСТЕМАМ APPLIED

Этот документ посвящен тем, кто ищет специализированные передовые решения для нагрева, кондиционирования, воздухообмена и очистки воздуха.

Решения, способные повысить уровень комфорта в местах, где мы живем, работаем и проводим наше свободное время.

Комплексные круглогодичные системы, направленные на существенное снижение энергопотребления и уменьшение зависимости от ископаемых видов топлива, используемых в традиционных решениях ОВиК, таких как природный газ и нефть.

INSPIRING SOLUTIONS

Этот Гид печатается каждый год и представляет все продукты компании Clivet с целью предоставления основы для принятия решений и оценок.

Более подробная информация, регулярно обновляемая, доступна в области "SYSTEMS AND PRODUCTS" на сайте www.clivet.com, www.clivetlive.com и на наших приложениях, где они могут быть скачаны бесплатно.

Чтобы быть в курсе новостей Clivet, следите за нами в наших социальных сетях:

CLIVET. INSPIRING SOLUTIONS

HYDRONIC SYSTEM

PACKAGED SYSTEM

PRIMARY AIR

WLHP SYSTEM

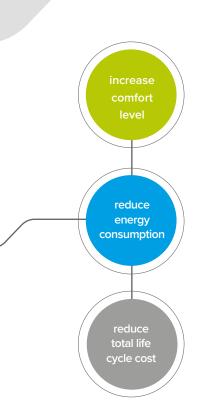
TERMINAL UNITS AND AHU

DIGITAL SOLUTIONS

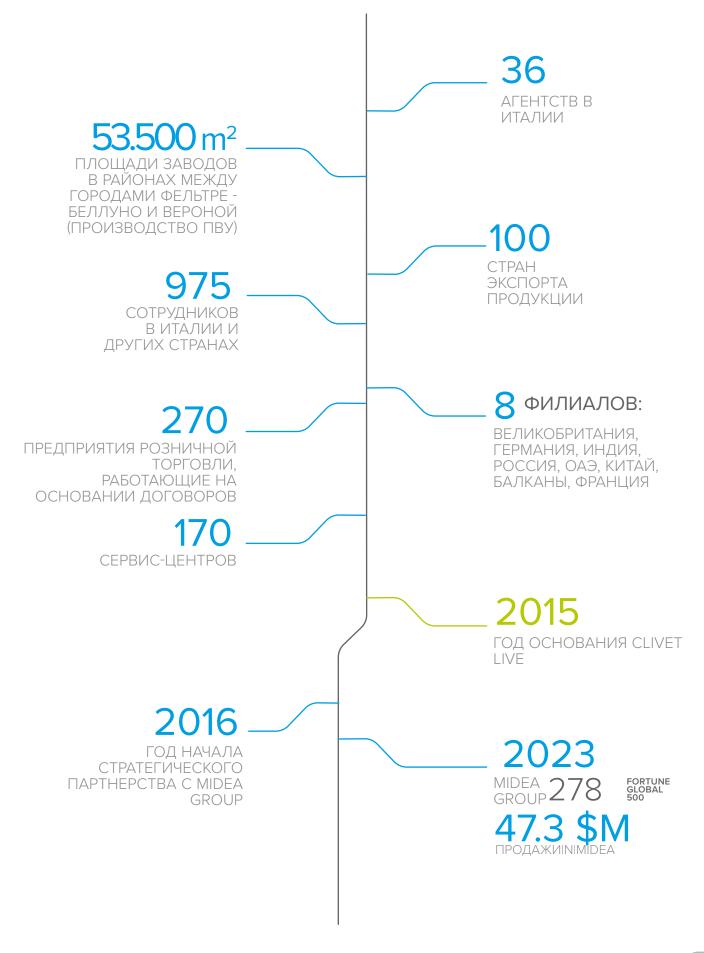
ALWAYS READY FOR THE FUTURE

INSPIRING SOLUTIONS

За более 30 летний опыт работы над проектированием и производством систем кондиционирования и обработки воздуха, сочетающих высокую эффективность с минимальным воздействием на окружающую среду, Clivet разработал решения для обеспечения и поддержания постоянного комфорта для людей и с заботой об окружающей среде. Проектирование и разработка решений для круглогодичного кондиционирования с инновационными технологиями является частью ДНК компании Clivet.

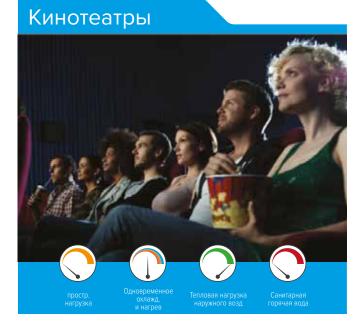


COMFORT FOR THE PLANET & PEOPLE


НАШИ ЦЕННОСТИ

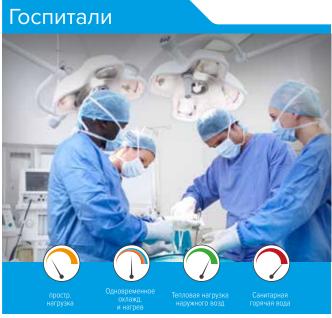
В ЧАСТНОМ, КОММЕРЧЕСКОМ И ПРОМЫШЛЕННОМ СЕКТОРАХ

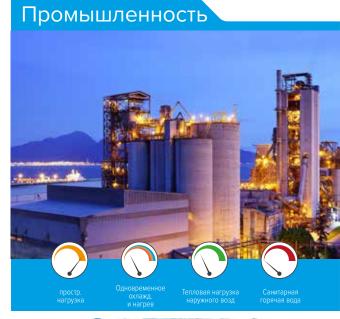
Увеличение комфорта, экономия энергии, предоставление клиенту лучших решений и сервис для всего жизненного цикла системы: это те ценности, которые вдохновляют нас на создание высокотехнологичного оборудования для частного, коммерческого и промышленного секторов.

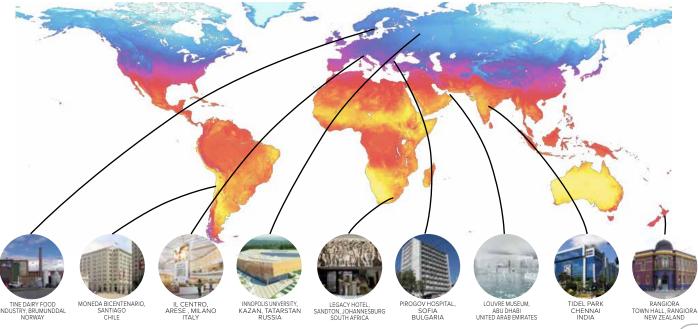

CLIVET В ЦИФРАХ

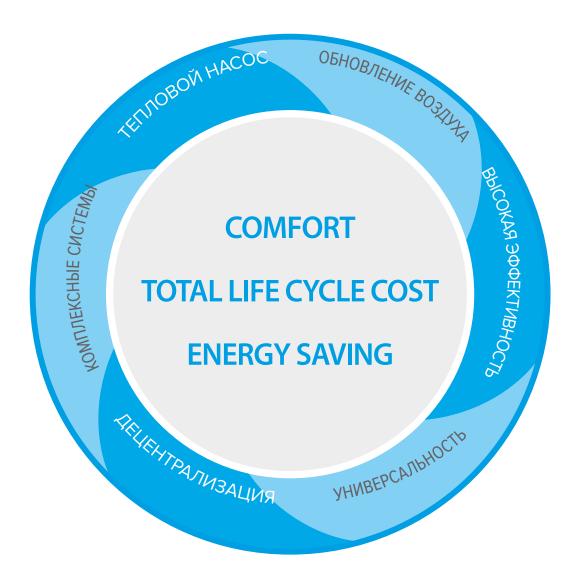
СПЕЦИАЛИЗИРОВАННЫЕ СИСТЕМЫ

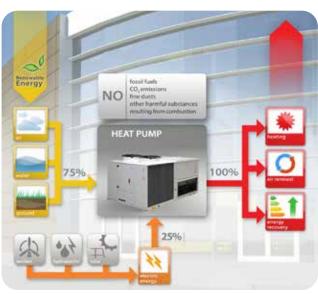
для любых применений и климата


Сегодня здания должны удовлетворять повышенным и постоянным требованиям к комфорт у независимо от внешних условий.


Не все здания похожи: в зависимости от их назначения существуют существенные различия с точки зрения интенсивности нагрузки, одновременной нужды в горячей и охлажденной воде, производства бытовой горячей воды и требуемой величины воздухообмена.


Именнопоэтому Clivet создал серию решений для специализированных систем, которые отвечают конкретным потребностям различных зданий за счет оптимизации общей эффективности по отношению к традиционным системам (бойлер, чиллер, конечные устройства). Специализированные системы Clivet упрощают работу по проектированию и монтажу, улучшают управление целой системой, снижают воздействие на окружающую среду, и в то же время оптимизируют первоначальные инвестиции, снижают эксплуатационные расходы, увеличивая класс энергоэффективности здания.





ПРИНЦИПЫ CLIVET

для оценки здания Все системы Clivet основываются на 6 ключевых принципах, что делает продукты и системы Clivet уникальными.

Эти принципы являются основой для работы с уникальными решениями, которые всегда были частью ДНК Clivet.

Они представляют основу, на которой Clivet построил свой новый взгляд на системы, тем самым, став ориентиром для систем будущего.

Обновление воздуха

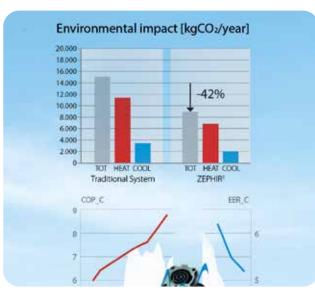
Технология теплового насоса

Тепловые насосы - это технология будущего, т.к. они значительно более эффективны, чем традиционные системы со сгоранием топлива:

- ✓ Сокращение на 50% потребление электроэнергии, выбросов СО₂ и эксплуатационных затрат
- ✓ Широкое использование возобновляемых источников энергии

Благодаря тепловым насосам, системы Clivet гарантируют:

- ✓ Одну систему как для нагрева, так и для охлаждения
- ✓ Управляемая механическая вентиляция с инновационной активной термодинамической рекуперацией
- ✓ Бесплатное производство горячей бытовой воды летом
- ✓ Одновременный нагрев и охлаждение при одновременных нагрузках


Качество воздуха внутри современных герметичных зданий ухудшается из-за ряда загрязняющих веществ.

Управляемая система механической вентиляции имеет важное значение для создания комфортной для жизни среды.

Автономная система Clivet с термодинамической рекуперацией энергии, примененной для вентиляции, имеет следующие преимущества:

- ✓ рекуперирует энергию как зимой, так и летом
- ✓ Снижает влияние наружного воздуха с помощью более эффективной системы и обеспечивает большеэнергии для помещений
- √ Снижает мощность главных генераторов энергии ограничивая их работу при сезонных пиках
- ✓ Производит осушение летом

Высокая сезонная эффективность

ZEPHIR³, Office Building in London, case study

Сезонная эффективность обеспечивает лучший способ понимания того, как используется энергия при выборе системы, обеспечивающей круглогодичный комфорт.

Каждое применение имеет разное обоснование, которое зависит от множества факторов, включающих в себя климатическую зону, требуемые параметры внутри помещения количество и время пребывания людей и тепловые нагрузки.

Clivet создает системы, предназначенные для удовлетворения специфических потребностей каждого отдельного решения, оптимизируя таким образом использование ресурсов системы для достижения высочайшего уровня сезонной эффективности, благодаря:

- ✓ Единому системному решению
- Использованию самых предпочтительных ресурсов
- ✓ Полному управлению всей системой
- Непрерывному контролю мощности

Многофункциональность

Многофункциональные системы Clivet включают в себя все функции для обеспечения круглогодичного комфорта.

Они оптимизируют решение, основанное на потребностях различных применений, и интегрируют их в специальных продуктах и в полнофункциональных системах:

- √ Нагрев
- ✓ Охлаждение
- ✓ Производство горячей бытовой воды
- ✓ Обновление и очистка воздуха
- ✓ Осушение воздуха

Децентрализация

Пример децентрализованной системы

В разработке продуктов и систем Clivet одному аспекту уделяется особое внимание - тому, как рационализировать выбор с точки зрения дизайна и строительства, который может повлиять на эксплуатационные расходы системы и воздействие на окружающую среду в течение всего жизненного цикла.

Много лет назад, Clivet успешно разработал принцип генерирования энергии так близко, как возможно к тем потребностям, которые есть в данный момент:

- Модульные системы, которые активны только при необходимости
- √ Снижение или полное отсутствие дополнительного энергопотребления (например, насосами)
- ✓ Автономность системы
- ✓ Легкое обслуживание и управление
- ✓ Адаптивность к потребностям системы

Интегрированные системы

Clivet проектирует свои системы с интеграцией всех необходимых услуг для каждого применения.

Элементы системы, оптимизированные и промышленно переработанные для работы совместно, гарантируют самую высокую эффективность и надежность.

- ✓ Упрощенные дизайн и установка
- ✓ Уменьшенные капиталовложения
- ✓ Высокое качество систем
- ✓ Гарантированные характеристики

Digital Solutions

Системы кондиционирования, установленные в жилых, торговых и промышленных зданиях, являются основным фактором энергопотребления - на них приходится почти половина общего объема потребления данного здания. Необходимость осуществления энергетической оптимизации становится все более насущной в связи с постоянно растущим влиянием климатических изменений.

Компания Clivet, проявляя решимость взять на себя ключевую роль в данном процессе, стремится разрабатывать и популяризировать новые технические решения, нацеленные на увеличение энергоэффективности зданий и значительное сокращение создаваемого экологического воздействия (углеродного следа), для создания все более экоустойчивых установок.

Система оптимизации для сферы услуг и промышленности

Оптимизация работы систем отопления, вентиляции и кондиционирования воздуха (HVAC) позволяет максимизировать эффективность работы установок в различных рабочих условиях, обеспечивая снижение энергопотребления и бесперебойность работы при производстве и распределении тепловой энергии.

Решение Clivet **INTELLIPLANT** управляет всеми элементами средних и крупных гидравлических систем, гарантируя наилучшие условия работы при минимально возможном энергопотреблении.

Разработанный полностью специалистами компании Clivet, Intelliplant позволяет достичь максимальной эффективности системы и устройств, с которыми она взаимодействует, благодаря алгоритмам, разработанными на основе ноу-хау компании Clivet и позволяющими наилучшим образом использовать логику машинного регулирования по сравнению с наиболее распространенными обобщенными решениями на рынке.

Система управления для жилого сектора

Комфортные условия в помещениях, в которых мы живем, является одним из наиболее важных факторов для охраны благополучия и здоровья людей.

Control4 NRG позволяет координировать работу всех компонентов установки, оптимизируя эксплуатационные показатели и качество работы установок и обеспечивая выработку соответствующих объемов требуемой энергии исключительно в пределах реальных потребностей того или иного помещения для удовлетворения нужд всех находящихся в нем людей.

Устройство Control4 NRG может быть интегрировано с наиболее передовым оборудованием для производства возобновляемой энергии, получая как энергию, производимую фотоэлектрическими устройствами, так и энергию, используемую системами кондиционирования, и обеспечивая отображение профилей энергопотребления и уровней внутреннего потребления.

Control4 NRG обеспечивает соответствие зданий классу A и выполнение самых строгих требований, касающихся их классификации в соответствии с энергоэффективностью.

Система удаленного мониторинга и управления через облако для всех систем Clivet.

Clivet Eye это система мониторинга посредством облачных технологий, позволяющая осуществлять удаленное управление со смартфона, планшета и ПК установками и системами для кондиционирования воздуха, отопления, обновления воздуха и производства горячей воды.

Подключение системы Clivet Eye дает возможность удаленного доступа к установке и объединяет присущие мобильному приложению оперативность и простоту в использовании с расширенным функционалом анализа данных данных, доступным с помощью ПК и характерным для средств управления, предназначенных для профессионального применения.

Хранящаяся в памяти Clivet Eye географическая карта позволяет определять положение объекта на местности и взаимодействовать с системами в режиме реального времени, отображая в простом, интуитивно понятном виде соответствующие рабочие условия.

Уведомления о событиях оперативно предупреждают о любых сбоях в работе системы.

CLIVET COЧЕТАНИЕ ЛУЧШИХ ТЕХНОЛОГИЙ

с отличным качеством продукции, что подтверждено системой сертификации Инновации, на стороне которых всегда выступала компания Clivet, поддерживаются индустриальной структурой, которая адаптировала стандарты, регламентируемые в ISO 9001 с 1996. Данные стандарты гарантируют качество системы управления производством, которая разработана для контроля процессами в компании, чтобы направить их на улучшение действенности и эффективности организации, так же как и удовлетворённости клиентов

В 2021 году был открыт Innovation Centre - новый Центр технических инноваций компании Clivet с двумя новыми залами, в которых специалисты Clivet могут проводить функциональные, эксплуатационные, акустические, вибрационные и нагрузочные испытаний при температуре воздуха от -20°С до +60°С, подвергая им установки мощностью до 2,5 МВт, работающие с использованием новых хладагентов с уменьшенным воздействием на окружающую среду. Наши клиенты могут следить за этими испытаниями как непосредственно в Центре инноваций, так и через Интернет.

Clivet использует последние технологии в обработке листового металла, а так же новейшие станки и прессы для производства теплообменников и компонентов. Высокое качество продукта так же гарантировано использованием запатентованного электронного управления на производстве.

Только Clivet использует нетоксичную пайку с низким воздействием на окружающую среду, качество которой соответствует самым строгим европейским стандартам.

Сертификация и безопасность

Продукция Clivet полностью соответствует директивам производства продукции, как этого требуют законы Еврозоны, для того, чтобы гарантировать надлежащий уровень безопасности.

Для удовлетворения своих клиентов компания Clivet выбрала сертифицированную систему менеджмента качества, охраны окружающей среды и безопасности в соответствии с международными стандартами ISO 9001, ISO 14001 и ISO 45001.

Clivet принимает активное участие в продвижении принципов строительства зелёных зданий, и стала членом ассоциации **GBC Италия**. Данная организация работает совместно с USGBC, некоммерческой организацией из США, которая продвигает в международном масштабе систему независимой сертификации LEED - Лидерства в Энергетическом и Атмосферном даизайне.

В 2015 году компания Clivet стала партнером CasaClima и вошла в группу компаний, характеризующихся богатым техническим опытом и неизменным упором на устойчивое управление жилищем.

Там, где это применимо https://www.agenziacasaclima.it/en

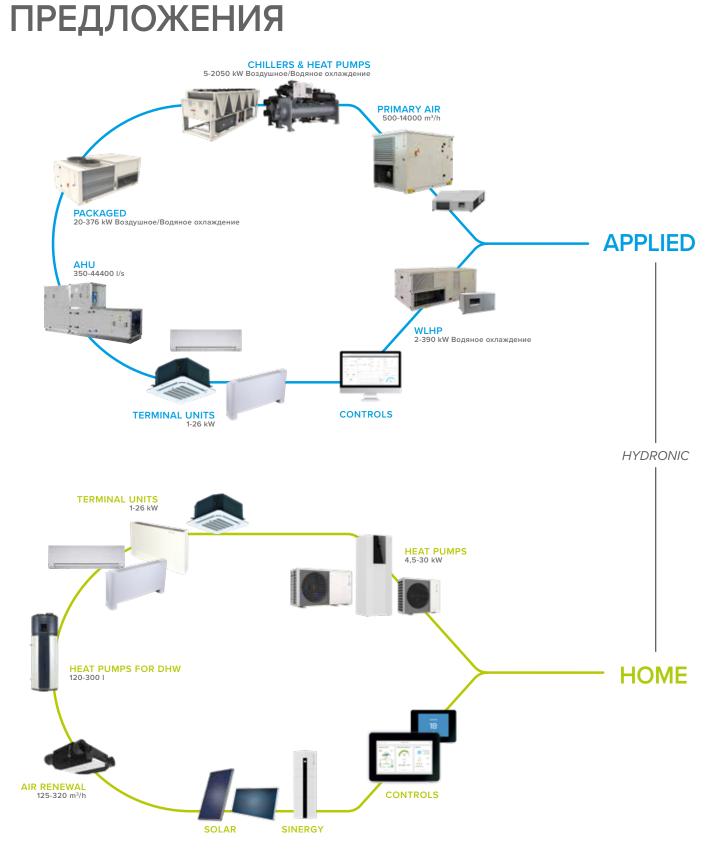
KEYMARK является брендом, признанным во многих европейских странах за предоставление стимулов для установки тепловых насосов для отопления помещений и производства горячей воды для бытовых нужд. Страны, которые признают знак и сертифицированную продукцию, доступны на сайте www.heatpumpkeymark.com

Страны, которые признают знак и сертифицированную продукцию, доступны на сайт

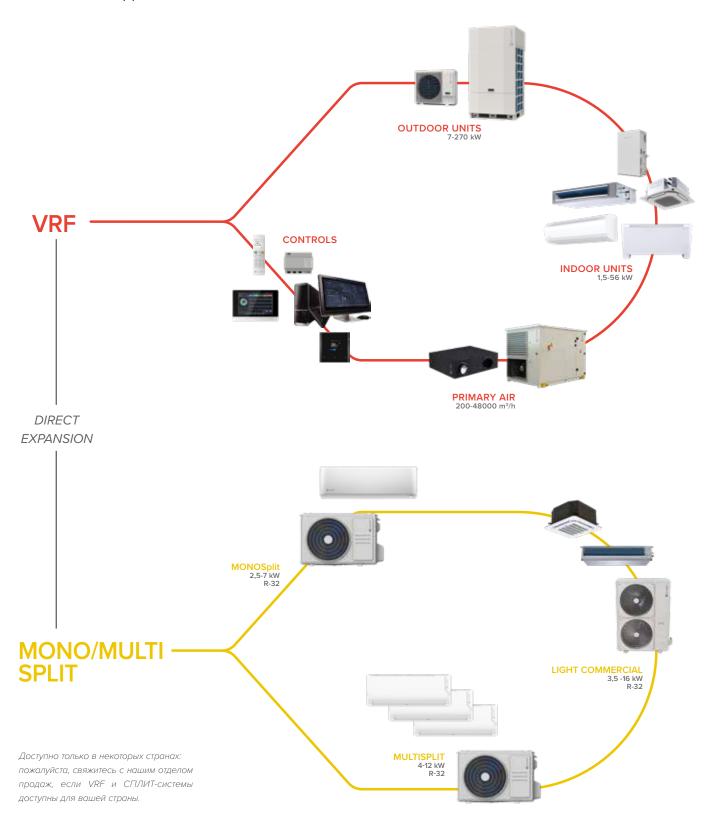
https://keymark.eu/en/products/heatpumps/heat-pumps Там, где это применимо

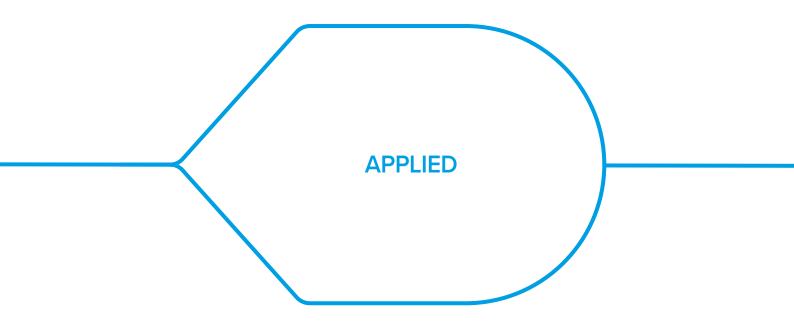
Clivet участвует в сертификационных программах **EUROVENT** «Чиллеры и тепловые «Руфтопы», «Приточно-вытяжные установки» «VRF». Соответствующие продукты перечислены справочнике сертифицированных продуктов EUROVENT и на веб-сайте www.eurovent-certification. com/it. Программы сертификации охватывают чиллеры и тепловые насосы в установленных пределах для каждой программы.

Там, где это применимо


Широкий ассортимент продукции и комплексные системы Clivet соответствуют строгим требованиям Директивы ErP (Energy related Products) 2009/125/CE (Ecodesign) и 2010/30/EU (Energy labeling – Энергетическая маркировка), целью которых является снижение потребляемой энергии продукцией на отопление, охлаждение, вентиляцию и получение горячей бытовой воды, склоняя пользователей к энергоэффективным решениям.

Директивы 2009/125/EC и 2010/30/EU включают следующие регламенты: (EU) 206/2012, (EU) 626/2011; (EU) 811/2013, (EU) 812/2013, (EU) 813/2013, (EU) 814/2013; (EU) 1253/2014, (EU) 1254/2014; (EU) 2016/2281.




Компания Clivet участвует в проекте BEYOND GREEN по продвижению устойчивого развития и циклической экономики вместе с другими членами SAFE, системы консорциума для циклической экономики, которая осведомленности работает над повышением общественности об экологических управлении и валоризации отходов, образовании и обучении в области охраны окружающей среды, исследованиях в области охраны окружающей среды.

ВСЕ ТЕХНОЛОГИИ ДЛЯ ПОЛНОГО

Нагрев, охлаждение, обновление воздуха и производство горячей бытовой воды

Для малых и средних коммерческих секторов

Sheen EVO 2.0 **ELFOEnergy Sheen EVO**

THUNDER

ELFOEnergy Magnum

	Large EVO	ELFOEnergy STORM EVO	ELFOEnergy Duct Medium
Мощности (A35/W7)	24 ÷ 252 kW	34 ÷ 85 kW	34 ÷ 321 kW
ErP соответствие (только тепловые насосы)	ErP	ErP	ErP/
	R-32	R-290	R-410A
Продукты			R-410A
	R-32	R-32	R-410A
« « « « « « « » « » « » « » « » « » «	WSAT-YSI OCINVERTER WISAT-YEE1 PRM	WSAT-YES OG WETTER	
	WSAT-YEE1 EXC PRM	WSAT-YES	
⊕ № В Чиллеры с Free Cooling	WISAT-YEE1 FC	WSAT-YES FC	
**	WISAN-YSE1 EXC OG INVERTER WISAN-YEE1 OG INVERTER	WISAN-P OPNIVERTER WSAN-YES OPNIVERTER	
тепловой насос	WISAN-YSE1 EXC OG INVERTER WISAN-YEE1	WISAN-P	WSAN-XEM HW

₩ MF

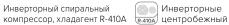
с высокой темп воды

Поливалентные тепловые насосы

DUCT

WSN-XEE

Канальные блоки



WŞAN-XIN MF DC INVERTER

WSAN-XEM MF

DO INVERTER

Для больших коммерческих и промышленных секторов

SPINchiller4 SCREWLine⁴-i **REMOTEX SCREWLine**³ SPINchiller³

239 ÷ 682 kW 215 ÷ 1260 kW 204 ÷ 1523 kW

MSRT-XSC3 EXC

WSAT-YSC4

WDAT-iZ4 WDAT-iK4

MSRT-XSC3 EXC

WSAT-YSC4

WDAT-iZ4 WDAT-iK4

WSAT-XSC3 FC EXC

WDAT-SL3 FC EXC

MSRN-XSC3 EXC

WSAN-YSC4

WSAN-YSC4 PL EXC

Для малых и средних коммерческих секторов

ELFOENERGY Ground

ELFOENERGY Ground Medium²

Мощности (A35/W7)	6 ÷ 33 kW	34 ÷ 356 kW
ErP соответствие (только тепловые насосы)	ErP/	ErP

1	න්ද න්ද න්ද
	Adbs. Adbs. Adbs.

Продукты

WSH-XEE2

Чиллеры

WSH-XEE2 Тепловые насосы с

WSHN-EE

переключением по водяному контуру

WSHH-LEE1 (Только нагрев)

Тепловые насосы с переключением по фреоновому контуру WSHN-XEE2

WSHN-XEE2 MF

Поливалентные тепловые насосы

Испарительные блоки

Для больших коммерческих и промышленных секторов

SCREWLine⁴-i SPINchiller³ **Centrifugal Chiller SCREWLine**⁴

211 ÷ 394 kW 340 ÷ 1499 kW 808 ÷ 1933 kW

WSH-XSC3	WDH-iK4	WCH-iZ IIVJAYER WCH-i IIVJAYER
WSH-XSC3	WDH-iK4 SAM VOIRTER WDH-SB4	

WSHN-XSC3

MSE-XSC3 MDE-SL3

HYDRONIC System

Элементы системы

СЕРИЯ	РАЗМЕР ОТ	до	НАИМЕНОВАНИЕ		СТР.
Водяные чиллеры и Тепловые насосы - в	оздушного охлажд	цения ко	нденсатора - осевые вентиляторы		
WiSAN-YSE1	10.1	55.2	Sheen EVO 2.0	New	24
WSAT-YSi	16.2	55.2	ELFOEnergy Sheen EVO	New	26
WiSAT-YEE1 / WiSAN-YEE1	45.4	90.4	Large EVO	New	28
WiSAT-YEE1 FC	45.4	90.4	Large EVO FC	New	30
WiSAN-P	14.1	30.2	THUNDER	New	32
WSAT-YES / WSAN-YES	18.2	35.2	ELFOEnergy Storm EVO		34
WSAT-YES FC	18.2	35.2	ELFOEnergy Storm EVO FC		36
WSAN-XIN MF	18.2	45.2	ELFOEnergy Magnum MF		38
WSAN-XEM MF	50.4	120.4	ELFOEnergy Magnum MF		40
WSAN-XEM HW	35.4	60.4	ELFOEnergy Magnum HW		42
WSAT-YSC4 / WSAN-YSC4	80.3	240.6	SPINchiller ⁴		44
WSAN-YSC4 PL	90.4	265.6	SPINchiller ⁴ PL	New	48
WSAN-YSC4	260.8	480.12	SPINchiller ⁴		50
WSAT-YSC4	265.6	350.8	SPINchiller ⁴		52
WSAT-XSC3 FC	90.4	360.6	SPINchiller ³ FC		54
MSRT-XSC3+CEV-XT / MSRN-XSC3+CEV-XN	90.4	240.4	Remotex		56
WDAN-iK4 MF	220.2	420.2	SCREWLine ⁴ -i MF		60
WDAT-iZ4	120.1	580.2	SCREWLine ⁴ -i		62
WDAT-iK4	120.1	580.2	SCREWLine ⁴ -i		64
WDAT-SL3 FC	200.2	580.2	SCREWLine ³ FC		66
Водяные чиллеры и Тепловые насосы - в	оздушного охлажд	цения ко	нденсатора - центробежные вентиля	горы	
WSN-XEE	122	402	ELFOEnergy Duct Medium		68
Водяные чиллеры и Тепловые насосы - в	одяного охлажден	ия конд	енсатора		
WSHN-EE	17	121	ELFOEnergy Ground		70
WSH-XEE2 / WSHN-XEE2	12.2	120.2	ELFOEnergy Ground Medium ²		72
WSHH-LEE1	19.2	80.2	ELFOEnergy Ground Medium ² HW		74
WSHN-XEE2 MF	12.2	80.2	ELFOEnergy Ground Medium ² MF		76
WSH-XSC3 / WSHN-XSC3	70.4	120.4	SPINchiller ³		80
WiDHN-KSL1 PL	140.2	360.2	SCREWLine ⁴ -i PL	New	84
WDH-iK4	120.1	540.2	SCREWLine ⁴ -i		86
WDH-SB4	220.2	580.2	SCREWLine ⁴		88
WCH-iZ	230	450	Centrifugal Chiller		90
WCH-i	250	550	Centrifugal Chiller		92
Безконденсаторные водяные чиллеры - в	оздушный источн	ик			
MSE-XSC3	90.4	160.4	SPINchiller ³		94
MDE-SL3	120.1	580.2	SCREWLine ³		96

NEW PRODUCT

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

Sheen EVO 2.0

Реверсивный тепловой насос

С воздушным охлаждением Наружная установка

Мощность от 24,1 до 128 kW

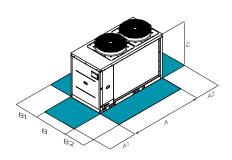
- ✓ Технология «Full Inverter» с использованием спиральный компрессоров
- ✓ Высокотемпературная установка для сурового климата
- ✓ Хладагент R32 GWP = 675
- Версия Excellence с очень высокой сезонной эффективностью, версия Premium с высокой сезонной эффективностью при компактных размерах
- √ Нагрев воды до +60°C, Охлаждение воды до 0°C, работа при -20°C
- ✓ Две акустические конфигурации: стандартный и сверхтихий
- ✓ Совместимость с блоками Control4 NRG, фотогальваническим оборудованием, солнечными нагревателями и умными сетями электроснабжения
- √ Выпускается также в гибридном варианте в комплекте с конденсационным котлом для прямого производства горячей хозяйственной воды

функции и характеристики

охлаждение

Роторный

Спиральный



Электронный расширительный Control4 NRG клапан

Размеры и зоны обслуживания

установка

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3ME	P	▶▶ WiSAN-YSE1	10.1	12.1	14.1	16.2	18.2	22.2	30.2	35.2	43.2*	45.2*
SC-EXC	А - Длина	mm	1920	1920	1920	2274	2274	2274	3300	3300	3906	3906
SC-EXC	В - Ширина	mm	1005	1005	1005	1060	1060	1060	1100	1100	1184	1184
SC-EXC	С - Высота	mm	1340	1340	1340	1480	1480	1480	1510	1510	1750	1750
SC-EXC	A1	mm	800	800	800	800	800	800	800	800	800	800
SC-EXC	A2	mm	800	800	800	800	800	800	800	800	800	800
SC-EXC	B1	mm	800	800	800	800	800	800	800	800	1300	1300
SC-EXC	B2	mm	800	800	800	800	800	800	800	800	1300	1300
SC-EXC	Рабочий вес	: kg	298	298	298	530	530	530	830	830	1143	1143

РАЗМЕ	Р	▶▶ WiSAN-YSE1	10.1	12.1	14.1	16.2	18.2	22.2	30.2	35.2	40.2	45.2*	50.2*	55.2*
SC-PRM	А - Длина	mm	1920	1920	1920	2274	2274	2274	3300	3300	3300	2832	2832	2832
SC-PRM	В - Ширина	mm	1005	1005	1005	1060	1060	1060	1100	1100	1100	1184	1184	1184
SC-PRM	С - Высота	mm	1340	1340	1340	1480	1480	1480	1510	1510	1510	1750	1750	1750
SC-PRM	A1	mm	800	800	800	800	800	800	800	800	800	800	800	800
SC-PRM	A2	mm	800	800	800	800	800	800	800	800	800	800	800	800
SC-PRM	B1	mm	800	800	800	800	800	800	800	800	800	1300	1300	1300
SC-PRM	B2	mm	800	800	800	800	800	800	800	800	800	1300	1300	1300
SC-PRM	Рабочий вес	kg	298	298	298	530	530	530	830	830	830	862	862	862

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

^{*} ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

версии и конфигурации

ТИП ВЕНТИЛЯТОРОВ:

VEND Высокоэффективный DC вентилятор (Стандартно)

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

EN Особо малошумная акустическая конфигурация

технические характеристики

Размер		▶ WiSA	N-YSE1	10.1	12.1	1	4.1	16.2	18.2	22.2	30.2	2 3	5.2	43.2*	45.2*
SC-EXC	 Холодильная мощность (EN 14511:2022) 	(1)	kW	24.1	26.6	3	0.3	43,8	49.7	56.8	70.1	8	0.2	94.6	106
SC-EXC	Полная потребляемая мощность (EN 14511:2022)		kW	7,50	9,11	1	0,6	14,1	16,4	19,9	22,9) 2	8,0	30,3	34,8
SC-EXC	EER (EN 14511:2022)	(1)	-	3,21	2,93	2	,87	3,10	3,03	2,85	3,06	5 2	,86	3,12	3,06
SC-EXC	SEER	(4)	-	4.81	4.65		.53	4,32	4.32	4.25	4.24		.23	4.95	4,93
SC-EXC	Nsc.	(4)	%	189,4	183,0) 17	8,2	169,8	169,8	167,0	166,6	5 16	6,2	195,0	194,2
SC-EXC	 Тепловая мощность (EN 14511:2022) 	(2)	kW	24,3	28.8		4,2	50,5	54,7	63.4	74,9		5,2	98,2	107
SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(2)	kW	7.29	8.81		0.7	14,2	15.6	19.1	21,5		6,4	29,1	31,9
SC-EXC	COP (EN 14511:2022)	(2)	-	3,33	3,27		.20	3,55	3,51	3,32	3,48		,23	3,37	3,34
SC-EXC	Холодильные контуры		Nr	-,				-,		1	-,		,	-,	
SC-EXC	Кол-во компрессоров		Nr		1						2				
SC-EXC	Тип компрессоров		-			RC	TARY IN	VERTER				SC	ROLL IN	/ERTER	
SC-EXC	Хладагент		-						R-	32					
SC-EXC	Номинальное напряжение		V							3~/50					
SC-EXC	Уровень звуковой мощности	(3)	dB(A)	73	74		75	75	76	78	78		81	82	83
EN-EXC	Уровень звуковой мощности	(3)	dB(A)	69	71		72	71	71	72	73		75 –	77	78
	ва ErP (Energy Related Products)	(0)	u2(//)				_	7.							
	тический класс — СРЕДНИЙ климат - W35		_	Δ+++	Δ+++	Δ.	+++	Δ+++	Δ+++	Δ++	Δ++		\++	_	
	тический класс – СРЕДНИЙ климат - W55			Δ++	Δ++		++	Δ++	Δ++	A++			Δ+		
	ДНИЙ климат - W35	(4)	_	4.54	4.49		44	4,46	4.46	4,41	4.33		.29	4,65	4.60
η _{s,н}	A. W. 1. 100	(4)	%	179,0	177,0		5,0	175,0	175,0	173,0	170.0		9,0	183,0	181,0
	ДНИЙ климат - W55	(4)	-	3.24	3,22		,19	3,24	3,21	3,19	3,20		1,16	3,42	3,38
$\eta_{S,H}$	дини онысти	(4)	%	127.0	126,0		5,0	127,0	125,0	125,0	125,0		3,0	134,0	132,0
- 13,n				, -											
Размер		▶▶ WiSA		10.1	12.1	14.1	16.2		22.2	30.2	35.2	40.2			
SC-PRM	 Холодильная мощность (EN 14511:2022) 	(1)	kW	25,2	27,6	32,2	45,7	52,1	60,7	74,3	86,2	94,2	111	121	128
SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	8,34	10,1	11,8	15,4	18,1	22,0	25,5	31,5	35,8	40,8	46,3	51,2
SC-PRM	EER (EN 14511:2022)	(1)	-	3,02	2,74	2,73	2,95	2,88	2,75	2,90	2,85	2,82	2,71	2,61	2,51
SC-PRM	SEER	(4)	-	4,50	4,40	4,24	4,04	4,09	4,07	3,96	3,91	3,87	4,67	4,54	4,42
SC-PRM	η _{s,c}	(4)	%	177,0	173,0	166,6	158,5		159,8	155,4	153,4	151,8	183,8	178,6	173,8
SC-PRM	◆ Тепловая мощность (EN 14511:2022)	(2)	kW	27,0	29,8	35,7	52,5	57,9	66,6	78,5	91,2	102	117	129	138
SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(2)	kW	8,40	9,32	11,3	15,8	17,6	21,2	23,5	29,9	35,5	36,5	40,7	43,7
SC-PRM	COP (EN 14511:2022)	(2)	-	3,21	3,20	3,15	3,33	3,29	3,14	3,34	3,05	2,88	3,21	3,18	3,15
SC-PRM	Холодильные контуры		Nr							1					
SC-PRM	Кол-во компрессоров		Nr		1						2				
SC-PRM	Тип компрессоров		-			ROTARY	INVERTE	R				SCROLL	INVERTE	R	
SC-PRM	Хладагент		_						R-	32					
SC-PRM	Номинальное напряжение		V							3~/50					
SC-PRM	Уровень звуковой мощности	(3)	dB(A)	75	76	77	77	78	80	80	83	83	84	85	85
EN-PRM	Уровень звуковой мощности	(3)	dB(A)	72	73	73	73	73	74	76	77	78	78	79	79
	ва ErP (Energy Related Products)	\- <i>/</i>	()												
	тический класс — СРЕДНИЙ климат - W35		_	Δ++	Δ++	Δ++	Δ++	Δ++	Δ++	Δ++	Δ++	Δ++	_		
	ДНИЙ климат - W35	(4)	_	4,29	4,23	4,11	4,22	4.19	4.17	4,12	4,08	4,13	4,11	4,07	4,04
η _{s,н}		(4)	%	169.0	166,0	161,0	166,0		164,0	162,0	160,0	162,0	161,0	160,0	159,0
*15,H		(7)	70	103,0	100,0	101,0	100,0	103,0	107,0	102,0	100,0	102,0	101,0	100,0	133,0

(1) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

(2) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°C; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°C) М.Т.

(3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013. (4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018 Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных контрольных условиях), Регламент Комиссии (ЕС) № 813/2013 (номинальная тепловая мощность ≤400 кВт при определенных контрольных условиях).

аксессуары

Блок с 1 ON/OFF насосом HYG1 **HYGU1V** Гидрогруппа с инверторным насосом на сторона пользователя ACC Накопительный бак **IFWX** Стальной сетчатый фильтр на стороне воды **AVIBX** Антивибрационные опоры **IFWI** Стальной сетчатый фильтр на стороне воды входит в комплект

поставки

REMAUX Дистанционный модуль для вспомогательного управления чиллерами SHEEN / STORM **AMMSX** Антисейсмические виброопоры

AVIBI Антивибрационные опоры входят в комплект поставки устройства.

PGFC Защитная решетка теплообменника **PGFCX** Защитная решетка теплообменника

VACS 3-х ходовой клапан ГВС

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

^{*} ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

NEW PRODUCT

ELFOEnergy Sheen EVO

Водяной чиллер

Воздушное охлаждение Наружная установка

Мощность от 43,0 до 131 kW

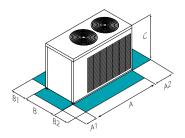
- √ Технология «Full Inverter» с использованием спиральный компрессоров
- ✓ Оптимальное решение для установки при ремонте или при строительстве объектов недвижимости для первоначального капиталовложения
- ✓ Хладагент R32 GWP = 675
- ✓ Повышенная сезонная энергоэффективность
- ✓ Температура охлажденной воды до -8°C
- ✓ Три варианта звукоизоляции: стандартный, бесшумный и сверх-бесшумный
- Управление работой в модульной конфигурации с установкой до 16 устройств каскадом

функции и характеристики

Тепловой

Роторный

Спиральный



DC INVERTER

расширительный Control4 NRG клапан

Размеры и зоны обслуживания

PA3MEP I	▶▶ WSAT-YSi	16.2	20.2	24.2	30.2	35.2	40.2	45.2*	50.2*	55.2*
А - Длина	mm	2280	2280	2280	3300	3300	3300	2832	2832	2832
В - Ширина	mm	1060	1060	1060	1100	1100	1100	1184	1184	1184
С - Высота	mm	1320	1320	1320	1510	1510	1510	1750	1750	1750
A1	mm	800	800	800	800	800	800	800	800	800
A2	mm	800	800	800	800	800	800	800	800	800
B1	mm	800	800	800	800	800	800	1300	1300	1300
B2	mm	800	800	800	800	800	800	1300	1300	1300
Эксплуатационная м	acca kg	470	470	470	680	680	680	771	771	771

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

^{*} ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

версии и конфигурации

ТИП ВЕНТИЛЯТОРОВ:

VEND Высокоэффективный DC вентилятор (Стандартно)

технические характеристики

Размер 🕨	WSA	T-YSi	16.2	20.2	24.2	30.2	35.2	40.2	45.2*	50.2*	55.2*
 Холодильная мощность (EN 14511:2022) 	(1)	kW	43,0	54,0	65,0	76,0	87,0	98,0	112	121	131
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	13,0	17,2	23,8	23,4	28,7	35,7	37,9	42,4	47,3
EER (EN 14511:2022)	(1)	-	3,31	3,14	2,72	3,25	3,02	2,74	2,95	2,85	2,76
SEER	(2)	-	4,97	4,81	4,65	5,37	5,15	4,95	5,11	5,03	4,93
η _{s,c}	(2)	%	195,8	189,5	182,9	212,0	203,2	195,2	201,4	198,2	194,2
Холодильные контуры		Nr					2				
Кол-во компрессоров		Nr					1				
Тип компрессоров		-	F	OTARY INVERTE	R			SCROLL	INVERTER		
Хладагент		-					R-32				
Номинальный расход воздуха		l/s	6944	6944	6944	10417	10417	10417	13900	13900	13900
Номинальное напряжение		V					400/3N~/50				
Уровень звуковой мощности	(3)	dB(A)	80	81	82	82	83	84	83	84	84

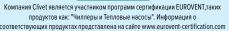
Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

аксессуары

HYG1 HYGU1V	Блок с 1 ON/OFF насосом Гидрогруппа с инверторным насосом на сторона пользователя	REMAUX	Дистанционный модуль для вспомогательного управления чиллерами SHEEN / STORM
ACC	Накопительный бак	AMMSX	Антисейсмические виброопоры
IFWX	Стальной сетчатый фильтр на стороне воды	AVIBI	Антивибрационные опоры входят в комплект поставки устройства.
AVIBX	Антивибрационные опоры	PGFC	Защитная решетка теплообменника
IFWI	Стальной сетчатый фильтр со стороны воды входит в комплект	PGFCX	Защитная решетка теплообменника
	поставки (доступно только с опцией: ASING	CCME	Микроканальный теплообменник с эпоксидным покрытием

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°С; Входящая наружная температура воздуха = 35°С (2) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018 (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.


^{*} ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

NEW PRODUCT

ErP

Large EVO

Водяной чиллер

WiSAT-YEE1: только охлаждение WiSAN-YEE1: реверсивный тепловой насос С воздушным охлаждением Наружная установка

Мощность от 110 до 252 kW

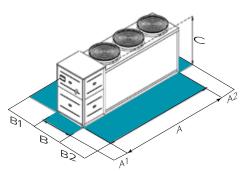
- √ Технология «Full Inverter» с использованием спиральный компрессоров
- ✓ Высокотемпературная установка для сурового климата
- ✓ Хладагент R32 GWP = 675
- ✓ Высокая сезонная эффективность при компактных размерах
- √ Горячая вода до 60°C, охлажденная вода до -8°C, работа при -20°C
- ✓ Три варианта звукоизоляции: стандартный, бесшумный и сверх-бесшумный
- 🗸 Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- √ Встроенный гидромодуль, аккумулирующий бак и частичная рекуперация

функции и характеристики

(WiSAT-YEE1)

Роторный

Спиральный



клапан

Управление расширительный Control4 NRG

Размеры и зоны обслуживания

PA3ME	P WISAT-	YEE1	45.4	50.4	55.4	60.4	65.4	70.4	75.4	80.4	85.4	90.4
SC-EXC	А - Длина	mm	3310	3310	3310	3310	4300	4300	4300	4300	4300	4300
SC-EXC	В - Ширина	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
SC-EXC	С - Высота	mm	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
SC-EXC	A1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
SC-EXC	A2	mm	800	800	800	800	800	800	800	800	800	800
SC-EXC	B1	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
SC-EXC	B2	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
SC-EXC	Эксплуатационная масса	kg	894	894	904	904	1154	1154	1154	1180	1180	1180

PASME	:P ►► WISAI-	YEE1	45.4	50.4	55.4	60.4	65.4	70.4	/5.4	80.4	85.4	90.4
SC-PRM	А - Длина	mm	3310	3310	3310	3310	4300	4300	4300	4300	4300	4300
SC-PRM	В - Ширина	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
SC-PRM	С - Высота	mm	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
SC-PRM	A1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
SC-PRM	A2	mm	800	800	800	800	800	800	800	800	800	800
SC-PRM	B1	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
SC-PRM	B2	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
SC-PRM	Эксплуатационная масса	kg	894	894	894	904	1154	1154	1180	1180	1180	1180

PASMEP	WISAN-YEET	45.4	50.4	55.4	60.4	65.4	70.4	/5.4	80.4	85.4
А - Длина	mm	3310	3310	3310	3310	4300	4300	4300	4300	4300
В - Ширина	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200
С - Высота	mm	1900	1900	1900	1900	1900	1900	1900	1900	1900
A1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000
A2	mm	800	800	800	800	800	800	800	800	800
B1	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350
B2	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350
Эксплуатационн	ая масса kg	966	966	1009	1009	1250	1250	1352	1352	1352

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании

версии и конфигурации

ТИП ВЕНТИЛЯТОРОВ:

VENDC Высокоэффективный DC вентилятор (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

Частичная рекуперация энергии

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

SC Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

LN Малошумная акустическая конфигурация

EN Особо малошумная акустическая конфигурация

технические характеристики

				_/											
Размер				▶ ▶ WiS	AT-YEE1	45.4	50.4	55.4	60.4	65.4	70.4	75.4	80.4	85.4	90.4
SC-EXC	 Холодильная мощность (EN 1- 	4511:2	2022)	(1)	kW	110	118	133	142	156	169	183	196	209	226
SC-EXC	Полная потребляемая мощность (EN 145	511:2022)	(1)	kW	34,2	38,5	46,1	50,3	50,0	54,6	64,0	59,4	65,5	74,2
SC-EXC	EER (EN 14511:2022)			(1)	-	3,22	3,08	2,89	2,82	3,12	3,09	2,86	3,31	3,19	3,04
SC-EXC	SEER			(4)	-	5.07	5,05	4.94	4.93	5.25	5.24	5.19	5.34	5,31	5,28
SC-EXC	η _{s.c}			(4)	%	200.0	199.0	194,0	194,0	207,0	207.0	205,0	211,0	210,0	208,0
SC-EXC	Холодильные контуры				Nr			,	,		2	,	,	.,.	
SC-EXC	Кол-во компрессоров				Nr						4				
SC-EXC	Тип компрессоров					ROTARY	INVERTER	*			•	SCROLL I	NVFRTFR		
SC-EXC	Хладагент									R-	-32	00110221			
SC-EXC	Номинальное напряжение				V						8N [~] /50				
SC-EXC	Уровень звуковой мощности			(3)	dB(A)	84	84	84	84	85	85	85	88	89	89
LN-EXC	Уровень звуковой мощности			(3)	dB(A)	81	81	81	81	82	82	82	84	85	85
EN-EXC	Уровень звуковой мощности			(3)	dB(A)	78	78	78	78	79	79	79	80	81	81
EN-EXC	эровень звуковой мощности														
Размер					AT-YEE1	45.4	50.4	55.4	60.4	65.4	70.4	75.4	80.4	85.4	90.4
SC-PRM	 Холодильная мощность (EN 1- 			(1)	kW	125	135	143	155	174	192	211	226	241	252
SC-PRM	Полная потребляемая мощность (Е	N 145	11:2022)	(1)	kW	44,2	49,2	53,5	58,8	62,4	73,2	71,6	78,1	80,3	86,0
SC-PRM	EER (EN 14511:2022)			(1)	-	2,83	2,74	2,67	2,64	2,79	2,63	2,94	2,90	3,00	2,93
SC-PRM	SEER			(4)		4,76	4,71	4,70	4,77	4,91	4,90	5,06	5,03	5,06	5,05
SC-PRM	η _{s,c}			(4)	%	188,0	185,0	185,0	188,0	193,0	193,0	199,0	198,0	199,0	199,0
SC-PRM	Холодильные контуры				Nr						2				
SC-PRM	Кол-во компрессоров				Nr						4				
SC-PRM	Тип компрессоров					RO	TARY INVER	TER	*			SCROLL I	NVERTER		
SC-PRM	Хладагент				-					R-	-32				
SC-PRM	Номинальное напряжение				V					400/3	8N~/50				
SC-PRM	Уровень звуковой мощности			(3)	dB(A)	86	86	86	87	87	90	91	91	91	91
LN-PRM	Уровень звуковой мощности			(3)	dB(A)	83	83	83	84	84	87	88	88	88	88
EN-PRM	Уровень звуковой мощности			(3)	dB(A)	80	80	80	81	81	84	85	85	85	85
_					_								_		
Размер	▶► Wis			45.4		0.4	55.4	60.4		5.4	70.4	75.4		0.4	85.4
	тьная мощность (EN 14511:2022)	(1)	kW	115		127	139	152		164	176	196		215	233
	отребляемая мощность (EN 14511:2022)	(1)	kW	44,0		51,0	56,3	66,5		66,8	75,2	73,6		5,8	99,0
	14511:2022)	(1)		2,61		2,49	2,47	2,29		2,46	2,34	2,66		2,51	2,35
SEER		(4)		4,51		4,51	4,36	4,28		1,48	4,45	4,48		,45	4,42
$\eta_{s,c}$		(4)	%	177,4		77,4	171,4	168,2		76,2	175,0	176,2		75,0	173,8
Теплова:	я мощность (EN 14511:2022)	(2)	kW	118		130	150	170		190	210	230	2	250	268
Полная по	отребляемая мощность (EN 14511:2022)	(2)	kW	37,7		13,2	47,3	55,1	(50,0	67,7	70,5	7	9,7	88,7
COP (EN	14511:2022)	(2)		3,13	3	3,01	3,17	3,09		3,17	3,10	3,26	3	3,14	3,02
Холодильн	ые контуры		Nr							2					
Кол-во ком	прессоров		Nr							4					
Тип компре	ессоров		-	ROT	ARY INVERT	ER		*				SCROLL INVE	ERTER		
Хладагент	·		-						F	₹-32					
Номинальн	юе напряжение		V						400/	/3N^/50					
SC-Уровень	звуковой мощности	(3)	dB(A)	85		85	86	86		88	88	89		89	89
	звуковой мощности	(3)	dB(A)	81		81	82	82		84	84	85		85	85
-	ь звуковой мощности	(3)	dB(A)	77		77	78	78		80	80	81		81	81
	ва ErP (Energy Related Produc		45(-1)												<u> </u>
	ДНИЙ климат - W35	(4)		4,16		4,12	4,15	4,08		4,19	4,15	4,23	Δ	1,16	4,11
	ALIFE IONIMOI - WOO	(4)	%	163,0		62,0	163,0	160,0		65,0	163,0	166,0		53,0	161,0
η _{s,н}		(+)	/0	103,0		J2,U	103,0	100,0	'	00,0	103,0	100,0	10	,,,,,	101,0

(1) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C (2) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим

(2) дельные, рассчитальные в соответствии со стандарном EN н-31/2022 относятся к следующим условиям. Вода во внутреннем теплообменнике = 40/45°C; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°C) М.Т.

(3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013. (4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018 * ROTARY/SCROLL INVERTER

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях) и правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

аксессуары

1PM Гидромодуль с 1 насосом 1PMV Гидромодуль со стороны потребителя с 1-м инверторным насосом **1PMH** Гидромодуль с 1-м высоконапорным насосом 1PMVH Гидромодуль со стороны потребителя с 1-м высоконапорным инверторным насосам 1P1SB Группа жидкостной теплопередачи со стороны рабочего контура с 1+1 однорежимным насосом 1PAP+S 1 высоконапорный насос + 1 резервный насос 1P1SBV Hydropack на стороне пользователя с одним инверторным насосом и одним резервным инверторным насосом **1PAPSV** Hydropack со стороны потребителя с одним высоконапорным инверторным насосом и одним резервным и нверторным насосом ACC Накопительный бак

IFWX Стальной сетчатый фильтр на стороне воды

VACS Переключатель ГВС: требуется

ABU Встроенное подключение к водяной системе

CMSC13 Последовательный коммуникационный модуль для Modbus TCP/IP,

BACnet IP, BACnet MSTP контролера

EMAU Дополнительная плата для управления расширенными функциями.

 RPR
 Детектор утечки хладагента

 AVIBX
 Антивибрационные опоры

 AMMSX
 Антисейсмические виброопоры

 PGFC
 Защитная решетка теплообменника

 PGCCH
 Защитные решетки от града

 PGCCHX
 Защитные решетки от града

TCDC Дренажный поддон с электроподогревом

IOTX Промышленный модуль IoT для реализации функций и сервисов в

сопряжении с облачными платформами

только WiSAT-YEE1:

ссме Микроканальный теплообменник

только WiSAN-YEE1:

СССА Теплообменник конденсатора медь/алюминий с акриловым покрытием

СССА1 Конденсатор с алюминиевым покрытием Energy Guard DCC

NEW PRODUCT

Водяной чиллер со свободным охлаждением

Воздушное охлаждение Наружная установка

Мощность от 115 до 233 kW

- √ Технология «Full Inverter» с использованием спиральный компрессоров
- √ Техническое решение, предназначенное для использования в холодном климате, обеспечивает высокую гибкость в эксплуатации благодаря применению модульного принципа
- ✓ Хладагент R32 GWP = 675
- Возможность работы при температуре окружающего воздуха до -25°C, температура охлажденной воды до -8°C
- ✓ Активное естественное охлаждение при температурах воздуха выше 0°С
- Две акустические конфигурации: стандартный и сверхтихий
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- Встреонный гидромодуль и аккумулирующий бак

функции и характеристики

Наружная

Роторный

Спиральный

DC INVERTER

FREE-COOLING


клапан

Intelliplant Управление

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶ ₩iSAT-YEE1 FC	45.4	50.4	55.4	60.4	65.4	70.4	75.4	80.4	85.4	90.4
А - Длина	mm	3310	3310	3310	4300	4300	4300	4300	4300	4300	4300
В - Ширина	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
С - Высота	mm	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
A1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
A2	mm	800	800	800	800	800	800	800	800	800	800
B1	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
B2	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной

Для всех других конфигураций - см. в техническом описании.

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

версии и конфигурации

ТИП ВЕНТИЛЯТОРОВ:

VENDC Высокоэффективный DC вентилятор (Стандартно)

ЕСТЕСТВЕННОЕ ОХЛАЖДЕНИЕ:

FCD СВОБОДНОЕ-ОХЛАЖДЕНИЕ прямое

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

EN Особо малошумная акустическая конфигурация

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии

технические характеристики

Размер ▶▶ W	ISAT-YE	E1 FC	45.4	50.4	55.4	60.4	65.4	70.4	75.4	80.4	85.4	90.4
Режим Free-Cooling ВЫКЛ												
Холодильная мощность	(1)	kW	109	120	133	150	164	180	193	203	221	236
Полная потребляемая мощность блока	(1)	kW	31,7	35,2	40,7	43,9	50,2	57,9	55,1	60,7	68,2	75,7
EER при полной нагрузке	(1)	-	3,45	3,41	3,26	3,43	3,26	3,10	3,50	3,35	3,24	3,12
SEER	(4)	-	4,74	4,71	4,64	4,87	4,86	4,80	4,99	4,96	4,94	4,91
$\eta_{s,c}$	(4)	%	186	186	182	192	191	189	197	195	195	193
СВОБОДНОЕ ОХЛАЖДЕНИЕ ДИ	PETTO H	Α										
Холодильная мощность	(2)	kW	102	102	102	157	157	157	157	157	157	157
Полная потребляемая мощность блока	(2)	kW	3,60	3,60	3,60	5,40	5,40	5,40	5,40	5,40	5,40	5,40
EER при полной нагрузке	(2)	-	28,4	28,4	28,4	29,1	29,1	29,1	29,1	29,1	29,1	29,1
Холодильные контуры		Nr						2				
Кол-во компрессоров		Nr						4				
Тип компрессоров		-	RO	OTARY INVERT	ER			S	CROLL INVERT	ER		
Хладагент		-					R-	32				
Номинальный расход воздуха		l/s	13333	13333	13333	19444	19444	19444	19444	19444	19444	19444
Номинальное напряжение		V					400/	3~/50				
Уровень звуковой мощности	(3)	dB(A)	87	87	87	90	90	90	91	91	91	91

⁽¹⁾ Данные относятся к следующим условиям: вода во внутреннем теплообменнике = 16/10°C; гликоль 30%; температура воздуха во внешнем теплообменнике 30°C

(3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

ABU

аксессуары

1PM	Гидромодуль с 1 насосом
1PMV	Гидромодуль со стороны потребителя с 1-м инверторным насосом
1PMH	Гидромодуль с 1-м высоконапорным насосом
1PMVH	Гидромодуль со стороны потребителя с 1-м высоконапорным
	инверторным насосам
1P1SB	Группа жидкостной теплопередачи со стороны рабочего контура с 1+1
	однорежимным насосом
1PAP+S	1 высоконапорный насос + 1 резервный насос
1P1SBV	Hydropack на стороне пользователя с одним инверторным насосом и
	одним резервным инверторным насосом
1PAPSV	Hydropack со стороны потребителя с одним высоконапорным
	инверторным насосом и одним резервным и нверторным насосом
ACC	Накопительный бак
IFWX	Стальной сетчатый фильтр на стороне воды
VACS	Переключатель ГВС: требуется

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

ADO	berpoennoe nogkino tenue k bogintou enereme
CMSC13	Последовательный коммуникационный модуль для Modbus TCP/IP,
	BACnet IP, BACnet MSTP контролера
REMAU	Дополнительная плата для управления расширенными функциями.
RPR	Детектор утечки хладагента
AVIBX	Антивибрационные опоры
AMMSX	Антисейсмические виброопоры
PGFC	Защитная решетка теплообменника
PGFCX	Защитная решетка теплообменника
PGCCH	Защитные решетки от града
PGCCHX	Защитные решетки от града
TCDC	Дренажный поддон с электроподогревом
IOTX	Промышленный модуль ІоТ для реализации функций и сервисов в
	сопряжении с облачными платформами
CCME	Микроканальный теплообменник

Встроенное полключение к воляной системе

⁽²⁾ Данные только по фрикулингу (компрессоры выключены) относятся к следующим условиям: температура воды во внутреннем теплообменнике = 16/10°C; температура воздуха во внешнем теплообменнике = 2°C C.T./1°C В.Т.; гликоль 30%

⁽⁴⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

NEW PRODUCT

✓ Высокотемпературное решение с модульным принципом

THUNDER

Реверсивный тепловой насос С воздушным охлаждением Наружная установка

Мощность от 34,9 до 72,7 kW

- ✓ Натуральный и экологически чистый хладагент R290 GWP = 3
- сезонная энергоэффективность энергоэффективность при полной нагрузке в сочетании с компактными габаритами
- ✓ Горячая вода до 75°C и широкий рабочий диапазон от -20°C до +42°C
- ✓ Три варианта звукоизоляции: стандартный, бесшумный и сверх-бесшумный
- ✓ Модульная схема позволяет устанавливать до 16 устройств каскадом (что уменьшает занимаемое оборудованием место и повышает его энергоэффективность)

совместимый

функции и характеристики

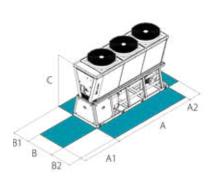
Воздушное охлаждение

Наружная

R-290

Спиральный

Электронный расширительный



Управление Control4 NRG клапан

Intelliplant

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶ WiSAN-P	14.1	16.1	18.1	19.1	20.1	25.2	30.2
А - Длина	mm	2400	2400	2400	2400	2400	3400	3400
В - Ширина	mm	1100	1100	1100	1100	1100	1100	1100
С - Высота	mm	2250	2250	2250	2250	2250	2250	2250
A1	mm	1000	1000	1000	1000	1000	1000	1000
A2	mm	500	500	500	500	500	500	500
B1	mm	500	500	500	500	500	500	500
B2	mm	500	500	500	500	500	500	500
Эксплуатационная ма	icca kg	709	709	757	757	757	1021	1021

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

версии и конфигурации

ТИП ВЕНТИЛЯТОРОВ:

VENDC Высокоэффективный DC вентилятор (Стандартно)

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

LN Малошумная акустическая конфигурация

EN Особо малошумная акустическая конфигурация

технические характеристики

Р азмер	WiS	AN-P	14.1	16.1	18.1	19.1	20.1	25.2	30.2
 Холодильная мощность (EN 14511:2022) 	(1)	kW	34,9	38,5	49,9	54,0	58,2	67,8	72,7
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	12,3	13,7	19,4	22,0	24,8	23,7	27,5
EER (EN 14511:2022)	(1)	-	2,84	2,81	2,58	2,46	2,35	2,86	2,64
SEER		-	5,36	5,20	4,73	4,58	4,36	5,47	5,30
$\eta_{s,c}$		%	211,0	205,0	186,0	180,0	171,0	216,0	209,0
 Тепловая мощность (EN 14511:2022) 	(2)	kW	39,9	45,2	55,1	61,5	68,5	78,6	85,9
Полная потребляемая мощность (EN 14511:2022) (2)	kW	12,8	14,7	17,2	19,7	23,4	25,0	28,5
COP (EN 14511:2022)	(2)	-	3,11	3,08	3,19	3,13	2,92	3,14	3,01
Колодильные контуры		Nr				1			
(ол-во компрессоров		Nr			1				2
Гип компрессоров		-				SCROLL INVERTER			
Х ладагент		-				R-290			
Номинальный расход воздуха		I/s	11333	11333	11333	11333	11333	17083	17083
Номинальное напряжение		V				400/3/50			
Директива ErP (Energy Related Prod	ucts)								
ErP Энергетический класс — СРЕДНИЙ		_	A+++	A+++	Δ++	A++	Δ++	Δ+++	A+++
климат - W35									
ErP Энергетический класс — СРЕДНИЙ		_	A++	Δ++	A++	A++	A++	A++	A++
климат - W55									
SCOP - СРЕДНИЙ климат - W35	(3)		4,51	4,45	4,29	4,23	4,15	4,70	4,54
s,н	(3)	%	177	175	169	166	163	185	179
SCOP - СРЕДНИЙ климат - W55	(3)		3,54	3,51	3,39	3,38	3,36	3,63	3,60
η _{s,н}	(3)	%	139	137	133	132	131	142	141

(1) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

температура воздуха = 33 с (2) Данные, рассчитанные в соответствии со стандартом EN 14511;2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°С; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°С) М.Т.

(3) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных контрольных условиях), Регламент Комиссии (ЕС) № 813/2013 (номинальная тепловая мощность <400 кВт при определенных контрольных условиях).

аксессуары

HYGU1VI Гидромодуль с инверторным насосом

1+1HYGU1VI Группа жидкостной теплопередачи со стороны рабочего контура с

1+1 инверторным насосом

ACIMP тальной аккумулирующий бак

IFWX Стальной сетчатый фильтр на стороне воды **AMODX**

Водные соединения для модульного CCKMUX Набор колпачков для труб для модульных блоков

PGFCX Защитная решетка теплообменника **PGCCHX** Защитные решетки от града

CCCA Теплообменник конденсатора медь/алюминий с акриловым

покрытием

CCCA1 Конденсатор с алюминиевым покрытием Energy Guard DCC

3DHW Трехходовой клапан

AMMX Резиновые антивибрационные опоры **AMMSX** Антисейсмические виброопоры

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

ELFOEnergy Storm EVO

Водяной чиллер

WSAT-YES: только охлаждение WSAN-YES: реверсивный тепловой насос Воздушное охлаждение Наружная установка

Мощность от 53,1 до 85,1 kW

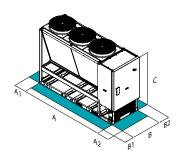
- √ Технология «Full Inverter» с использованием спиральный компрессоров
- ✓ Высокая гибкость в эксплуатации благодаря применению модульного принципа
- ✓ Хладагент R32 GWP = 675
- ✓ Повышенная сезонная энергоэффективность и энергоэффективность при полной нагрузке в сочетании с компактными габаритами
- Температура горячей воды до 55°C, температура охлажденной воды до -8°C
- Три варианта звукоизоляции: стандартный, бесшумный и сверх-бесшумный
- Управление работой в модульной конфигурации с установкой до 16 устройств каскадом
- ✓ Встроенный гидромодуль, аккумулирущий банк и трехходовой клапан (только для WSAN-YES)

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

функции и характеристики

(WSAN-YES)

клапан



расширительный Control4 NRG

Размеры и зоны обслуживания

охлаждение

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP >	► WSAT-YES	18.2	20.2	25.2	30.2	35.2
А - Длина	mm	2364	2364	3220	3220	3220
В - Ширина	mm	1130	1130	1130	1130	1130
С - Высота	mm	2155	2155	2155	2155	2155
A1	mm	800	800	800	800	800
A2	mm	800	800	800	800	800
B1	mm	500	500	500	500	500
B2	mm	500	500	500	500	500
Эксплуатационная ма	icca kg	575	575	725	725	725

PA3MEP >	WSAN-YES	18.2	20.2	25.2	30.2	35.2
А - Длина	mm	2364	2364	3220	3220	3220
В - Ширина	mm	1130	1130	1130	1130	1130
С - Высота	mm	2155	2155	2155	2155	2155
A1	mm	800	800	800	800	800
A2	mm	800	800	800	800	800
B1	mm	500	500	500	500	500
B2	mm	500	500	500	500	500
Эксплуатационная ма	acca kg	590	590	796	796	796

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ТИП ВЕНТИЛЯТОРОВ:

VENDC Высокоэффективный DC вентилятор (Стандартно)

технические характеристики

Размер 🕨	WSA [*]	T-YES	18.2	20.2	25.2	30.2	35.2
 Холодильная мощность (EN 14511:2022) 	(1)	kW	53,1	59,2	72,2	77,5	85,1
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	17,1	19,8	22,5	24,3	27,5
EER (EN 14511:2022)	(1)	-	3,10	2,99	3,21	3,19	3,10
SEER	(4)	-	4,85	4,84	4,89	4,81	4,74
η _{s,c}	(4)	%	190,8	190,6	192,6	189,5	186,4
Холодильные контуры		Nr			1		
Кол-во компрессоров		Nr			2		
Тип компрессоров		-	ROTARY	INVERTER		SCROLL INVERTER	
Хладагент		-			R-32		
Номинальный расход воздуха		l/s	6889	6889	10333	10333	10333
Номинальное напряжение		V			400/3N~/50		
Уровень звуковой мощности	(3)	dB(A)	82	82	81	84	85
Размер ▶ ▶ V	VSAN	I-YES	18.2	20.2	25.2	30.2	35.2
 Холодильная мощность (EN 14511:2022) 	(1)	kW	53,3	58,9	72,0	77,7	85,0
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	18,0	20,3	22,8	25,0	29,2
EER (EN 14511:2022)	(1)	-	2,95	2,90	3,15	3,10	2,91
SEER	(4)	-	4,57	4,51	4,64	4,62	4,50
η _{s,c}	(4)	%	179,8	177,4	182,6	181,8	177,0
 ◆ Тепловая мощность (EN 14511:2022) 	(2)	kW	53,0	66,0	79,3	84,7	91,0
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	16,5	20,6	23,8	25,7	28,0
COP (EN 14511:2022)	(2)	-	3,21	3,20	3,33	3,29	3,25
Холодильные контуры		Nr			1		
Кол-во компрессоров		Nr			2		
Тип компрессоров		-	ROTARY	INVERTER		SCROLL INVERTER	
Хладагент		-			R-32		
Номинальный расход воздуха		l/s	6889	6889	10333	10333	10333
Номинальное напряжение		V			400/3N~/50		
Уровень звуковой мощности	(3)	dB(A)	82	82	81	84	85
Директива ErP (Energy Related Produ	ıcts)						
ErP Энергетический класс — СРЕДНИЙ			Δ++	Δ++	Δ++	Д++	
климат - W35			ATT	ATT	ATT	ATT	-
SCOP - СРЕДНИЙ климат - W35	(4)	-	4,04	4,03	4,08	4,07	4,06
η _{s,H}	(4)	%	159	158	160	160	159

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

(4) SEER и SCOP в соответствии с EN 14825: 2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях).

аксессуары

IFWI

HYGU1V Гидрогруппа с инверторным насосом на сторона пользователя **ACIMP** тальной аккумулирующий бак **IFWX** Стальной сетчатый фильтр на стороне воды **AVIBX** Антивибрационные опоры **PGFC** Защитная решетка теплообменника **AMODX** Водные соединения для модульного **ССКМИХ** Набор колпачков для труб для модульных блоков Антивибрационные опоры входят в комплект поставки устройства. REMAUX Дистанционный модуль для вспомогательного управления чиллерами SHEEN / STORM

Стальной сетчатый фильтр со стороны воды входит в комплект

поставки (доступно только с опцией: ASING

Стальной сетчатый фильтр со стороны воды для агрегатов модульной конфигурации (доступно только с опцией: AMODX)

PGFCX Защитная решетка теплообменника

только WSAT-YES:

IFWCX

CCME Микроканальный теплообменник с эпоксидным покрытием

только WSAN-YES:

CCCA Теплообменник конденсатора медь/алюминий с акриловым

покрытием

CCCA1 Конденсатор с алюминиевым покрытием Energy Guard DCC

3DHW Трехходовой клапан

⁽²⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°C; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°C) М.Т.

⁽³⁾ Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

ELFOEnergy Storm EVO FC

Водяной чиллер со свободным охлаждением

Воздушное охлаждение Наружная установка

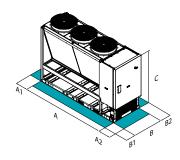
Мощность от 57,4 до 89,7 kW

- ✓ Технология «Full Inverter» с использованием компрессоров
- ✓ Техническое решение, предназначенное для использования в холодном климате, обеспечивает высокую гибкость в эксплуатации благодаря применению модульного принципа
- ✓ Хладагент R32 GWP = 675
- ✓ Повышенная сезонная энергоэффективность и энергоэффективность при полной нагрузке в сочетании с компактными габаритами
- √ Возможность работы при температуре окружающего воздуха до -25°C , температура охлажденной воды до 5°C
- ✓ Активное естественное охлаждение при температурах воздуха выше 0°С
- ✓ Модульная схема позволяет осуществлять параллельную установку до 16 устройств, совместима С вариантом охлаждающей установки
- Встреонный гидромодуль и аккумулирующий бак

функции и характеристики

охлаждение

DC INVERTER


COOLING

расширительный Control4 NRG

клапан

Размеры и зоны обслуживания

PA3MEP ►►WSA	T-YES FC	18.2	20.2	25.2	30.2	35.2
А - Длина	mm	2364	2364	3220	3220	3220
В - Ширина	mm	1130	1130	1130	1130	1130
С - Высота	mm	2155	2155	2155	2155	2155
A1	mm	800	800	800	800	800
A2	mm	800	800	800	800	800
B1	mm	500	500	500	500	500
B2	mm	500	500	500	500	500
Эксплуатационная масса	kg	659	659	850	850	850

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

ТИП ВЕНТИЛЯТОРОВ:

VENDC Высокоэффективный DC вентилятор (Стандартно)

ЕСТЕСТВЕННОЕ ОХЛАЖДЕНИЕ:

FCD СВОБОДНОЕ-ОХЛАЖДЕНИЕ прямое

технические характеристики

Размер	▶ WSAT-YE	SFC	18.2	20.2	25.2	30.2	35.2
Режим Free-Cooling ВЫКЛ							
Холодильная мощность	(1)	kW	57,4	63,9	75,9	81,5	89,7
Полная потребляемая мощность бл	ока (1)	kW	16,8	19	22,1	23,6	26,2
EER при полной нагрузке	(1)	-	3,42	3,36	3,43	3,45	3,42
SEER	(4)	-	4,48	4,51	4,56	4,48	4,41
$\eta_{s,c}$	(4)	%	176,2	177,4	179,4	176,2	173,4
СВОБОДНОЕ ОХЛАЖДЕНИЕ	диретто н	Α					
Холодильная мощность	(2)	kW	42,2	43,5	71	71,9	72,5
Полная потребляемая мощность бл	ока (2)	kW	1,7	1,7	2,5	2,5	2,5
EER при полной нагрузке	(2)	-	24,8	25,6	28,4	28,8	29
Холодильные контуры		Nr			1		
Кол-во компрессоров		Nr			2		
Тип компрессоров		-	ROTARY	INVERTER		SCROLL INVERTER	
Хладагент		-			R-32		
Номинальный расход воздуха		l/s	6889	6889	10333	10333	10333
Номинальное напряжение		V			400/3N~/50		
Уровень звуковой мощности	(3)	dB(A)	82	82	81	84	85

⁽¹⁾ Данные относятся к следующим условиям: температура воды во внутреннем теплообменнике = 15/10 °C; гликоль 30%; температура воздуха во внешнем теплообменнике 30°C

аксессуары

HYGUIV	гидрогруппа с инверторным насосом на сторона пользователя	PGFC	защитная решетка теплообменника
ACIMP	тальной аккумулирующий бак	REMAUX	Дистанционный модуль для вспомогательного управления
IFWX	Стальной сетчатый фильтр на стороне воды		чиллерами SHEEN / STORM
AVIBX	Антивибрационные опоры	SNATEX	Главный выключатель (исполнение не АТЕХ) для внешней установки
PGFCX	Защитная решетка теплообменника	SNB	Главный выключатель на панели
AMODX	Водные соединения для модульного	IFWI	Стальной сетчатый фильтр со стороны воды входит в комплект
CCME	Микроканальный теплообменник с эпоксидным покрытием		поставки (доступно только с опцией: ASING
CCKMUX	Набор колпачков для труб для модульных блоков	IFWCX	Стальной сетчатый фильтр со стороны воды для агрегатов модульной
AVIBI	Антивибрационные опоры входят в комплект поставки устройства.		конфигурации (доступно только с опцией: AMODX)

⁽²⁾ Данные только по естественному охлаждению (компрессоры выключены) относятся к следующим условиям: температура воды во внутреннем теплообменнике = 15/10°C; температура воздуха во внешнем теплообменнике = 2°C C.T./1°C B.T.; гликоль 30%

⁽³⁾ Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

⁽⁴⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

ELFOEnergy Magnum MF

Многоцелевой обратимый тепловой насос

С воздушным охлаждением Наружная установка

Мощность от 49,6 до 120 kW

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- ✓ Повышенная энергоэффективность при компактных габаритных

✓ Спиральные компрессоры инверторного типа и электронно-

✓ Технология поливалентных технологий, настраиваемая для 4-трубных или 2-трубных систем, обеспечивает максимальную универсальность ✓ Два независимых контура, обеспечивающих повышенную

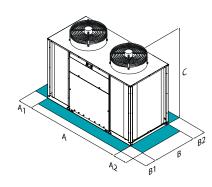
коммутируемые осевые вентиляторы

✓ Хладагент R410A - GWP = 2088

- ✓ Температура горячей воды до 60°C, температура охлажденной воды до 5°C
- Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Встроенный гидромодуль на стороне холодной и горячей воды, аккумулирующий бак и трехходовой клапан

функции и характеристики

охлаждение


належность

возд.потока

Размеры и зоны обслуживания

Наружная

PA3MEP ►► WSAN-X	IN MF	18.2	20.2	25.2	30.2	35.2	40.2	45.2
А - Длина	mm	2400	2400	2400	2400	3600	3600	3600
В - Ширина	mm	1160	1160	1160	1160	1160	1160	1160
С - Высота	mm	1540	1540	1790	1790	1890	1890	1890
A1	mm	800	800	800	800	800	800	800
A2	mm	800	800	800	800	800	800	800
B1	mm	800	800	800	800	800	800	800
B2	mm	800	800	800	800	800	800	800
Эксплуатационная масса	kg	650	660	720	755	934	977	1093

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

РЕКУПЕРАЦИЯ ТЕПЛА:

Полная рекуперация энергии (Стандартно)

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

Конфигурация для 4-х трубной системы (Стандартно)

2T Конфигурация для 2-х трубной системы

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов ECOBREEZE (Стандартно)

технические характеристики

Размер ▶▶ WSA	N-XI	N MF	18.2	20.2	25.2	30.2	35.2	40.2	45.2
ОХЛАЖДЕНИЕ 0% - НАГРЕВ 100%									
Холодильная мощность (EN 14511:2022)	(1)	kW	49,6	59,3	69,5	82,2	92,5	106	120
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	16,9	20,6	23,7	28,7	33,6	39,0	46,2
EER (EN 14511:2022)	(1)	-	2,93	2,88	2,93	2,86	2,75	2,72	2,60
SEER	(6)	-	3,34	3,43	3,47	3,63	3,76	3,73	3,82
$\eta_{s,c}$	(6)	%	130,5	134,1	135,6	142,4	147,6	146,2	149,9
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 0%									
Тепловая мощность (EN 14511:2022)	(2)	kW	57,1	69,8	79,7	94,9	109	125	143
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	17,2	20,9	24,0	28,6	32,7	37,5	42,9
COP (EN 14511:2022)	(2)	-	3,32	3,34	3,32	3,32	3,33	3,33	3,33
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 100%									
Холодильная мощность (EN 14511:2022)	(3)	kW	49,8	59,7	69,6	82,8	95,8	109	128
Тепловая мощность (EN 14511:2022)	(3)	kW	64,9	78,0	90,8	107	125	141	169
Полная потребляемая мощность (EN 14511:2022)	(3)	kW	15,3	18,6	21,5	25,4	29,6	33,7	41,1
TER (EN 14511:2022)	(4)	-	7,51	7,41	7,46	7,48	7,47	7,42	7,22
Холодильные контуры		Nr				2			
Кол-во компрессоров		Nr				2			
Тип компрессоров		-			INV	ERTER + ON/OFF SCF	ROLL		
Хладагент		-				R-410A			
Номинальное напряжение		٧				400/3N~/50			
Уровень звуковой мощности	(5)	dB(A)	82	82	83	84	85	85	86
Директива ErP (Energy Related Produ	cts)								
ErP Энергетический класс — СРЕДНИЙ климат - W35		-	Α+	A+	A+	A+	-		-
SCOP - СРЕДНИЙ климат - W35	(6)	-	3,69	3,74	3,59	3,75	3,83	3,80	3,96
η _{s,н}	(6)	%	145,0	147,0	141,0	147,0	150,0	149,0	155,0

(1) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды во внутреннем теплообменнике (испарителе) = 12/7°C; Воздух, поступающий во внешний теплообменник 35°C

(2) Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура воды с горячей стороны = 40/45°C; Температура воздуха, поступающего во внешний теплообменник 7°C D.B./6°C W.B.

(3) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды на холодной стороне = */7°C, температура воды на горячей

(4) TER = (Мощность охлаждения + Тепловая мощность) / (Общая потребляемая мощность) (5) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.

(6) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) N° 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных контрольных условиях), Регламент Комиссии (ЕС) № 813/2013 (номинальная тепловая мощность <400 кВт при определенных контрольных условиях).

аксессуары

CCCA	Теплообменник конденсатора медь/алюминий с акриловым	CMMBX	модуль последовательной связи с диспетчерской системой (Modbus)
	покрытием	CMSLWX	Модуль последовательной связи LON WORKS
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC	BACX	Модуль последовательной связи по протоколу BACnet
HYG1	Блок с 1 ON/OFF насосом	MF2	Многофункциональный фазовый монитор
HYG2	Блок с 2 ON/OFF насосами	SFSTR4N	Сервисная клавиатура (кабель от 1.5 метров)
VARYP	VARYFLOW + (2 инверторных насоса)	RCTX	Удаленное управление
HYGR1V	Гидрогруппа с инверторным насосом на стороне рекуперации	MHP	Манометры высокого и низкого давления
HYGU1V	Гидрогруппа с инверторным насосом на сторона пользователя	MHPX	Манометры высокого и низкого давления
ACC	Накопительный бак (разм. 35.2÷45.2	PGFC	Защитная решетка теплообменника
VACSR	Переключатель ГВС на стороне полной рекуперации	PGFCX	Защитная решетка теплообменника
HEDIF	Диффузор для высокоэффективного осевого вентилятора	AVIBX	Антивибрационные опоры
CMSC10	Модуль последовательной связи с системой диспетчеризации на базе	IFWX	Стальной сетчатый фильтр на стороне воды
	протокола LonWorks	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
CMSC8	Модуль последовательной связи с протоколом BACnet	GBL+F	Упаковка в виде деревянной решетки + дезинфекция
CMSC9	Модуль для последовательного соединения с системой		·
	централизованного управления по протоколу Modbus		

ELFOEnergy Magnum MF

Многоцелевой обратимый тепловой насос

Воздушное охлаждение Наружная установка

Мощность от 139 до 321 kW

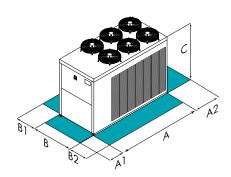
Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- ✓ Спиральные компрессоры и вентиляторы с фазовой отсечкой
- ✓ Технология с применением поливалентных хладонов, позволяет применять их в 4-трубных или 2-трубных системах, обеспечивает максимальную универсальность
- √ Два независимых контура, обеспечивающих повышенную надежность
- ✓ Хладагент R410A GWP = 2088
- ✓ Повышенная энергоэффективность при полной нагрузке и сезонная энергоэффективность (вариант «Excellence»)
- ✓ Температура горячей хозяйственной воды до 60°С, температура охлажденной воды до 5°C
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Встроенный гидромодуль на холодной и горячей стороне и аккумулиру-ющий бак

функции и характеристики

охлаждение

Спиральный



возд.потока

Размеры и зоны обслуживания

PA3MEP ►►WS	AN-XEM MF	50.4	55.4	60.4	65.4	70.4	80.4	90.4	100.4	110.4	120.4
А - Длина	mm	4450	4450	4450	4450	4450	4450	4450	5250	5250	5250
В - Ширина	mm	1812	1812	1812	1812	2250	2250	2250	2250	2250	2250
С - Высота	mm	1800	1800	1800	1800	2300	2300	2300	2300	2300	2300
A1	mm	1300	1300	1300	1300	1500	1500	1500	1500	1500	1500
A2	mm	750	750	750	750	750	750	750	750	750	750
B1	mm	1100	1100	1100	1100	1500	1500	1500	1500	1500	1500
B2	mm	1100	1100	1100	1100	1500	1500	1500	1500	1500	1500
Эксплуатационная ма	cca kg	1803	1825	1908	2073	2630	2750	2908	3467	3553	3694

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

РЕКУПЕРАЦИЯ ТЕПЛА:

Полная рекуперация энергии (Стандартно)

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

Конфигурация для 4-х трубной системы (Стандартно)

2T Конфигурация для 2-х трубной системы

технические характеристики

Pa₃mep ►► WSAN	I-XEI	M MF	50.4	55.4	60.4	65.4	70.4	80.4	90.4	100.4	110.4	120.4
ОХЛАЖДЕНИЕ 0% - НАГРЕВ 100%												
Холодильная мощность (EN 14511:2022)	(1)	kW	139	148	160	170	184	208	235	273	296	321
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	48,8	53,6	58,6	63,9	67,7	77,0	92,5	97,9	110	126
EER (EN 14511:2022)	(1)	-	2,85	2,76	2,73	2,66	2,72	2,70	2,54	2,79	2,69	2,55
SEER	(6)	-	3,99	4,00	4,04	4,07	3,96	4,11	4,10	3,95	3,91	3,85
$\eta_{s,c}$	(6)	%	156,5	157,0	158,8	159,7	155,2	161,2	161,0	155,1	153,2	151,0
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 0%												
Тепловая мощность (EN 14511:2022)	(2)	kW	157	170	186	196	213	243	278	321	346	387
Полная потребляемая мощность (EN	(2)	kW	47,2	51,5	55,5	59,0	64.4	73,2	83,7	95,8	104	116
14511:2022)	(2)	KVV	47,2	51,5	55,5	59,0	64,4	73,2	83,/	95,8	104	116
COP (EN 14511:2022)	(2)	-	3,33	3,30	3,35	3,32	3,31	3,32	3,32	3,35	3,33	3,34
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 100%												
Холодильная мощность (EN 14511:2022)	(3)	kW	140	151	162	172	187	212	239	278	300	328
Тепловая мощность (EN 14511:2022)	(3)	kW	184	198	216	230	249	284	326	371	401	447
Полная потребляемая мощность (EN	(3)	kW	43,3	47,5	51,4	56,0	58,5	67,6	81,3	85,7	94,8	109
14511:2022)	(3)	NVV	45,5	47,5	51,4	30,0		07,0	01,5		J4,0	103
TER (EN 14511:2022)	(4)		7,48	7,35	7,35	7,18	7,45	7,33	6,94	7,56	7,39	7,11
Холодильные контуры		Nr						2				
Кол-во компрессоров		Nr						4				
Тип компрессоров							SCF	OLL				
Хладагент		-					R-4	10A				
Номинальное напряжение				400/3	N~/50				400/	3~/50		
Уровень звуковой мощности	(5)	dB(A)	88	88	88	88	88	88	88	92	92	92
Директива ErP (Energy Related Produ	cts)											
SCOP - СРЕДНИЙ климат - W35	(6)	-	3,70	3,66	3,72	3,72	3,64	3,64	3,76	3,25	3,70	3,80
η _{s,H}	(6)	%	145,0	143,4	145,8	145,8	142,6	142,6	147,4	127,0	145,0	149,0

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды во внутреннем теплообменнике (испарителе) = 12/7°С; Воздух, поступающий во внешний теплообменник 35°C

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (ЕС) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (ЕС) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях).

аксессуары

HYG1	Блок с 1 ON/OFF насосом	BACX	Модуль последовательной связи по протоколу BACnet
HYG2	Блок c 2 ON/OFF насосами	CMSC9	Модуль для последовательного соединения с системой
VARYP	VARYFLOW + (2 инверторных насоса)		централизованного управления по протоколу Modbus
HYGR1V	Гидрогруппа с инверторным насосом на стороне рекуперации	CMMBX	модуль последовательной связи с диспетчерской системой (Modbus)
ACC	Накопительный бак	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
CCCA	Теплообменник конденсатора медь/алюминий с акриловым	PGFC	Защитная решетка теплообменника
	покрытием	PGFCX	Защитная решетка теплообменника
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC	MHP	Манометры высокого и низкого давления
HEDIF	Диффузор для высокоэффективного осевого вентилятора (разм.	MHPX	Манометры высокого и низкого давления
	70.4÷120.4)	VACSRX	Переключатель ГВС на стороне полной рекуперации
CREFB	Устройство для снижения потребляемой мощности вентиляторов	IFWX	Стальной сетчатый фильтр на стороне воды
	ECOBREEZE (разм. 70.4÷120.4)	RCTX	Удаленное управление
SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)	AVIBX	Антивибрационные опоры
MF2	Многофункциональный фазовый монитор	RE-20	Защита электрического щита от замерзания до минимальной наружной
CMSC10	Модуль последовательной связи с системой диспетчеризации на базе		температуры -20°С
	протокола LonWorks	RE-25	Защита электрического щита от замерзания до минимальной наружной
CMSLWX	Модуль последовательной связи LON WORKS		температуры -25°С
CMSC8	Модуль последовательной связи с протоколом BACnet		

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

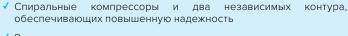
⁽²⁾ Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура воды с горячей стороны = 40/45°C; Температура воздуха, поступающего во внешний теплообменник 7°C D.B./6°C W.B.

⁽³⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды на холодной стороне = */7°C, температура воды на горячей стороне = */45°C

⁽⁴⁾ TER = (Мощность охлаждения + Тепловая мощность) / (Общая потребляемая мощность)

⁽⁵⁾ Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.

⁽⁶⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018


ELFOEnergy Magnum HW

Реверсивный тепловой насос

С воздушным охлаждением Наружная установка

Мощность от 86,0 до 150 kW

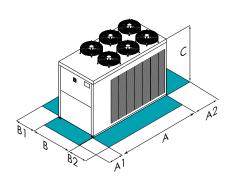
- ✓ Высокотемпературная установка для централизованного обслуживания жилых зданий
- ✓ Хладагент R410A GWP = 2088
- ✓ Повышенная сезонная энергоэффективность и энергоэффективность при полной нагрузке
- ✓ Температура хозяйственной воды до 65°C
- ✓ Возможность работы при температуре окружающего воздуха до -20°C, температура горячей воды до 55°C
- 🗸 Устройство частичной рекуперации энергии и клапан отвода горячей хозяйственной воды со стороны пользователя
- ✓ Встреонный гидромодуль и аккумулирующий бак

Компания Clivet является участником программ сертификации EUROVENT, таких продуктов как: "Чиллеры и Тепловые насосы". Информация о с оответствующих продуктах представлена на сайте www.eurovent-certification.com

функции и характеристики

охлаждение

Спиральный



Варьирование возд.потока

Размеры и зоны обслуживания

Наружная

PA3MEP >>WSAN-XI	EM HW	35.4	40.4	45.4	50.4	55.4	60.4
А - Длина	mm	3400	3400	3400	3400	4400	4400
В - Ширина	mm	1812	1812	1812	1812	1812	1812
С - Высота	mm	1800	1800	1800	1800	1800	1800
A1	mm	1300	1300	1300	1300	1300	1300
A2	mm	750	750	750	750	750	750
B1	mm	1100	1100	1100	1100	1100	1100
B2	mm	1100	1100	1100	1100	1100	1100
Эксплуатационная масса	kg	1285	1418	1441	1444	1735	1739

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии

технические характеристики

Размер	XEM	HW	35.4	40.4	45.4	50.4	55.4	60.4
 Холодильная мощность (EN 14511:2022) 	(1)	kW	86,0	98,6	110	118	131	150
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	31,3	35,3	37,3	41,6	48,3	54,6
EER (EN 14511:2022)	(1)	-	2,74	2,80	2,95	2,84	2,72	2,74
SEER	(4)	-	2,93	3,35	3,50	3,31	3,28	3,09
η _{s,c}	(4)	%	114,2	131,0	137,0	129,4	128,2	120,6
 ◆ Тепловая мощность (EN 14511:2022) 	(2)	kW	109	123	133	143	165	184
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	31,7	34,8	37,8	41,6	48,1	54,5
COP (EN 14511:2022)	(2)	-	3,43	3,52	3,53	3,45	3,42	3,38
Холодильные контуры		Nr				2		
Кол-во компрессоров		Nr				1		
Тип компрессоров		-			SCR	OLL		
Хладагент		-			R-4	10A		
Номинальный расход воздуха		l/s	16000	15567	15567	15567	20733	20733
Расход жидкости (сторона потребителя)		l/s	5,25	5,91	6,43	6,92	7,95	8,89
Номинальное напряжение		٧			400/3	N^/50		
Уровень звуковой мощности	(3)	dB(A)	86	86	86	86	88	88
Директива ErP (Energy Related Produc	cts)							
SCOP - СРЕДНИЙ климат - W35	(4)	-	3,57	3,95	3,90	3,88	3,57	3,64
$\eta_{S,H}$	(4)	%	140	155	153	152	140	143
SCOP - СРЕДНИЙ климат - W55	(4)	-	3,03	3,19	3,15	3,22	3,12	3,04
η _{s,H}	(4)	%	118	125	123	126	122	119

⁽f) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная

Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) № 811/2013 (номинальная тепловая мощность <70 кВт при определенных контрольных условиях), Регламент Комиссии (ЕС) № 813/2013 (номинальная тепловая мощность ≤400 кВт при определенных контрольных условиях).</p>

аксессуары


dbus)
),9)
,

условиям: температура возды внутреннего теплоооменника = 12/7°С; входящая наружная температура воздуха = 35°С (2) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°С; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 °С) М.Т.

теплоооменнике 7 с.т. 76 (с) м.т. (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

⁽⁴⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

ErP

SPINchiller⁴

Водяной чиллер

WSAT-YSC4: только охлаждение WSAN-YSC4: реверсивный тепловой насос Воздушное охлаждение Наружная установка

Мощность от 215 до 675 kW

- 🗸 Спиральные компрессоры, электронно-коммутируемые осевые вентиляторы и два независимых контура, обеспечивающих повышенную надежность
- √ Повышенная энергоэффективность при полной нагрузке и сезонная энергоэффективность (вариант «Excellence»), высокая сезонная энергоэффективность в сочетании с компактными габаритами (вариант «Premium»)
- ✓ Хладагент R32 GWP = 675
- √ Температура горячей хозяйственной воды до 55°C, температура охлажденной воды до -12°C
- Пластинчатый или кожухотрубный теплообменник
- ✓ Три варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- Встроенный гидромодуль, бак аккумулятор, частичная рекуперация тепла и полная рекуперация тепла (только для чиллера)

функции и характеристики

(WSAT-YSC4) (WSAN-YSC4)

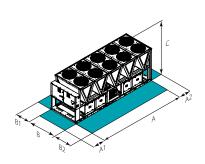
Наружная

R-32

Спиральный

расширительный

клапан



Hydropack

Intelliplant

Размеры и зоны обслуживания

охлаждение

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence

SC-PRM C шумоизолированными компрессорами (SC)-Премиум

7 1/1															
PA3ME	Р	▶▶ WSAT-Y	SC4	80.3	100.4	4 115	5.4 1	30.4	155.	5 170	.5 18	5.5 2	10.6	225.6	240.6
SC-EXC	А - Длина		mm	2925	2925	41	75	4175	5417	541	7 5	417	6680	6680	6680
SC-EXC	В - Ширина		mm	2228	2228	22	28 2	2228	2228	222	8 22	228	2228	2228	2228
SC-EXC	С - Высота		mm	2535	2535	25	35 2	2535	2535	253	5 25	35	2535	2535	2535
SC-EXC	A1		mm	1500	1500	150	00	1500	1500	150	0 15	00	1500	1500	1500
SC-EXC	A2		mm	700	700	70	0	700	700	700) 7	00	700	700	700
SC-EXC	B1		mm	1200	1200	120	00	1200	1200	120	0 12	.00	1200	1200	1200
SC-EXC	B2		mm	2250	2250	22	50 2	2250	2250	225	0 22	250	2250	2250	2250
SC-EXC	Рабочий вес		kg	1879	1898	23	45 2	2494	2979	315	2 3	314	3810	3943	4100
PA3ME	Р	▶▶ WSAT-Y	SC4	90.3	110	.4 1	30.4	145	.4 1	70.5	185.	210	0.6	225.6	240.6
SC-PRM	А - Длина		mm	2925	292	5 .	2925	417		4175	4175	54		5417	5417
SC-PRM	В - Ширина		mm	2228	222	8	2228	222	28	2228	2228	22	28	2228	2228
SC-PRM	С - Высота		mm	2535	253	5 _	2535	253	35	2535	2535	25	35	2535	2535
SC-PRM	A1		mm	1500	150	0	1500	150		1500	1500	15		1500	1500
SC-PRM	A2		mm	700	70)	700	70	0	700	700	70	00	700	700
SC-PRM	B1		mm	1200	120		1200	120		200	1200	12		1200	1200
SC-PRM	B2		mm	2250	225	0 :	2250	225		2250	2250	22		2250	2250
SC-PRM	Рабочий вес		kg	1893	200	0	2116	257	76	2763	2938	33	96	3563	3684
PA3ME	Р	▶▶ WSAN-Y	SC4			100.4	110.4			4 145.		_		.6 225.6	
SC-EXC	А - Длина		mm	3118	4114	4114	4114	4114							
SC-EXC	В - Ширина		mm			2250	2250	2250	225			225			
SC-EXC	С - Высота		mm	2520	2520	2520	2520	2520	252	2520	252	252	0 252	2520	2520
SC-EXC	A1		mm	1500		1500	1500	1500							
SC-EXC	A2		mm	700	700	700	700	700	700	700	700	700	70	0 700	700
SC-EXC	B1		mm	1200		1200	1200	1200		1200	1200	120	0 120	0 1200	1200
SC-EXC	B2								420		120			0 1200	1200
			mm	1200		1200	1200	1200							
SC-EXC	Рабочий вес		mm kg	1200 2300		1200 2652	1200 2772	2890							4861
РАЗМЕ	Рабочий вес Р	▶► WSAN-Y	kg	2300 90.3	2631 100.3	2652 110. 4	2772 4 120	2890).4 13	329 0.4 1	3438 45.4 1	359 60.4	4 409 185.5	7 419 210. 6	9 4761 225.6	4861 240.6
	Рабочий вес	▶▶ WSAN-Y	kg	2300	2631	2652	2772 4 120 311	2890 0.4 13	329 0.4 1	3438	359	4 409	7 419	9 4761 225.6	4861
РАЗМЕ	Рабочий вес Р	▶► WSAN-Y	kg 'SC4	2300 90.3 3118 2250	2631 100.3 3118 2250	2652 110. 4	2772 4 120 311 225	2890 0.4 13 18 4 50 23	329 3 0.4 1	3438 45.4 4114 2250	359 60.4 4114 2250	4 409 185.5 5091 2250	7 419 210.6 5091 2250	9 4761 225.6 6066 2250	4861 240.6
SC-PRM SC-PRM SC-PRM	Рабочий вес Р А - Длина В - Ширина С - Высота	▶► WSAN-Y	kg 'SC4 mm	2300 90.3 3118 2250 2520	2631 100.3 3118 2250 2520	2652 110.4 3118 2250 2520	2772 4 120 311 225 252	2890 0.4 13 18 4 50 2: 20 2!	329 30.4 1 114 250 :	3438 45.4 4114 2250 2520	359 60.4 4114 2250 2520	4 409 185.5 5091 2250 2520	7 419 210.6 5091 2250 2520	9 4761 225.6 6066 2250 2520	4861 240.6 6066 2250 2520
PA3ME SC-PRM SC-PRM	Рабочий вес Р А - Длина В - Ширина С - Высота А1	►► WSAN-Y	kg 'SC4 mm mm	2300 90.3 3118 2250 2520 1500	2631 100.3 3118 2250 2520 1500	2652 110.4 3118 2250	2772 4 120 311 225 252	2890 0.4 13 18 4 50 2: 20 2!	329 30.4 1 114 250 :	3438 45.4 4114 2250 2520	359 60.4 4114 2250 2520 1500	4 409 185.5 5091 2250 2520 1500	7 419 210.6 5091 2250	9 4761 225.6 6066 2250 2520	4861 240.6 6066 2250 2520 1500
SC-PRM SC-PRM SC-PRM SC-PRM SC-PRM SC-PRM	Рабочий вес Р А - Длина В - Ширина С - Высота А1	▶▶ WSAN-Y	kg SC4 mm mm mm	2300 90.3 3118 2250 2520 1500 700	2631 100.3 3118 2250 2520 1500 700	2652 110.4 3118 2250 2520 1500 700	2772 4 120 311 225 252 150 70	2890).4 13 18 4 50 2: 20 2! 00 15 0 7	329 30.4 1 114 250 520 500 00	45.4 4114 2250 2520 500 700	359 60.4 4114 2250 2520 1500 700	4 409 185.5 5091 2250 2520 1500 700	7 419 210.6 5091 2250 2520 1500 700	9 4761 6 225.6 6066 2250 2520 1500 700	4861 240.6 6066 2250 2520 1500 700
PA3ME SC-PRM SC-PRM SC-PRM SC-PRM SC-PRM SC-PRM	Рабочий вес Р А - Длина В - Ширина С - Высота А1 А2 В1	▶► WSAN-Y	kg /SC4 mm mm mm	2300 90.3 3118 2250 2520 1500 700 1200	2631 100.3 3118 2250 2520 1500 700 1200	2652 110.4 3118 2250 2520 1500 700 1200	2772 4 120 311 0 225 0 252 0 150 70 120	2890 9.4 13 18 4 50 22 20 29 00 15 0 7	329 30.4 1 114 250 : 520 : 500 : 00	3438 45.4 1 4114 2250 2520 1500 700 1200	60.4 4114 2250 2520 1500 700 1200	4 409 185.5 5091 2250 2520 1500 700 1200	7 419 210.6 5091 2250 2520 1500 700 1200	9 4761 6 225.6 6066 2250 2520 1500 700 1200	4861 240.6 6066 2250 2520 1500 700 1200
SC-PRM SC-PRM SC-PRM SC-PRM SC-PRM SC-PRM	Рабочий вес Р А - Длина В - Ширина С - Высота А1	▶▶ WSAN-Y	Kg 'SC4 mm mm mm mm mm	2300 90.3 3118 2250 2520 1500 700	2631 100.3 3118 2250 2520 1500 700	2652 110.4 3118 2250 2520 1500 700	2772 4 120 311) 225) 252) 150 70) 120) 120	2890 9.4 13 18 4 50 22 29 10 10 7 10 12 10 10 12	329 30.4 1 114 250 520 500 00 200 200	3438 45.4 1 4114 2250 2520 1500 700 1200 1200	359 60.4 4114 2250 2520 1500 700	4 409 185.5 5091 2250 2520 1500 700	7 419 210.6 5091 2250 2520 1500 700	9 4761 6 225.6 6066 2250 1500 700 1200 1200	4861 240.6 6066 2250 2520 1500 700

технические характеристики

ТСХНИ	ческие характеристик	<u>и</u>													
Размер		▶ ► WS	AT-YSC4	80.3	100.4	115	.4 1	30.4	155.5	170.5	185	.5 2 ⁴	10.6	225.6	240.6
ST/SC-EXC	 Холодильная мощность (EN 14511:2022) 	(1)	kW	222	267	31		364	423	472	520		573	624	675
ST/SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	69,4	85,5	99	,8	115	135	149	167		184	200	218
ST/SC-EXC	EER (EN 14511:2022)	(1)	-	3,20	3,12	3,1		3,17	3,15	3,16	3,1		3,12	3,12	3,10
ST/SC-EXC	SEER	(4)	-	4,70	4,67	4,7		4,75	4,92	5,00	4,9		1,94	4,96	4,90
ST/SC-EXC	<u>η_{s,c}</u>	(4)	%	185,2	183,8	188	3,3	187,1	193,6	197,0	195,	5 1	94,6	195,4	193,1
ST/SC-EXC	Холодильные контуры		Nr							2					
ST/SC-EXC	Кол-во компрессоров		Nr	3		4				5				6	
ST/SC-EXC	Тип компрессоров									ROLL					
ST/SC-EXC ST/SC-EXC	Хладагент Номинальное напряжение									-32 3 [~] /50					
ST-EXC	•	(3)	dB(A)	90	91	92	2	93	94	95	95		96	96	97
SC-EXC	Уровень звуковой мощности Уровень звуковой мощности	(3)	dB(A)	87	88			90	90	91	93		92	92	93
EN-EXC	Уровень звуковой мощности	(3)	dB(A)	84	84	86		86	86	87	88		88	88	89
LIVEXC	эровень звуковой мощности	(5)	ub(A)	04	04	- 00		00	- 00	- 07	- 00		00	- 00	
Размер		▶► WS	AT-YSC4	90.3	110	.4 1	30.4	145.4	17	0.5	185.5	210.	6 2	25.6	240.6
ST/SC-PRM	 Холодильная мощность (EN 14511:2022) 	(1)	kW	232	29		333	384		43	483	537		590	644
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	84,5	102		124	139		56	179	199		209	233
ST/SC-PRM	EER (EN 14511:2022)	(1)	-	2,74	2,8		2,70	2,77		84	2,70	2,70)	2,82	2,76
ST/SC-PRM	SEER	(4)	-	4,38	4,4	8	4,46	4,47	4,	65	4,64	4,61		4,69	4,62
ST/SC-PRM	η _{s,c}	(4)	%	172,3	176	,1	175,4	175,8		3,0	182,5	181,2	2	184,7	181,9
ST/SC-PRM	Холодильные контуры		Nr							2					
ST/SC-PRM	Кол-во компрессоров		Nr	3			4			5				6	
ST/SC-PRM	Тип компрессоров									ROLL					
ST/SC-PRM	Хладагент									-32					
ST/SC-PRM	Номинальное напряжение		V				00	22		3~/50	0.4			0.0	0.0
ST-PRM	Уровень звуковой мощности	(3)	dB(A)	90	91		92	93		94	94	95		96	96
SC-PRM EN-PRM	Уровень звуковой мощности Уровень звуковой мощности	(3)	dB(A)	87 84	88		89 86	89 87		90 37	90 88	91		92 89	92 89
EN-PRIVI	уровень звуковой мощности	(3)	dB(A)	84	86)	86	8/		57	88	89		89	89
Paguan		N WE	NI VECA	90.2	90.4	100 4	110 /	120.4	120 /	1/E /	160.4	10E E	210	6 225 6	2406
Pasmep ST/SC-EXC	 Холодильная мощность (EN 14511:2022) 		kW	80.3 215	90.4 240	100.4 265	110.4 290	120.4 320	130.4 355	145.4 390	160.4 430	185.5 500	210. 555	6 225.6 610	5 240.6 655
ST/SC-EXC	 ХОЛОДИЛЬНАЯ МОЩНОСТЬ (EN 14511:2022) Полная потребляемая мощность (EN 14511:2022) 	(1)	kW	72,9	76,4	84,7	94,9	106	114	128	1430	163	555 188	198	218
ST/SC-EXC	ЕЕR (EN 14511:2022)	(1)	KVV	2,95	3,14	3,13	3,05	3,02	3,11	3,04	3,00	3,06	2,96		3,01
ST/SC-EXC	SEER (EN 14511.2022)	(4)		4,45	4,79	4,74	4,81	4,84	4,86	4,78	4,72	4,88	4,84		4,86
ST/SC-EXC	η _{s,c}	(4)	%	175,0	188,5	186,6	189,4	190,4	191,3	188,1	186,0	192,1	190,7		191,5
ST/SC-EXC	• Тепловая мощность (EN 14511:2022)	(2)	kW	225	255	280	310	335	375	415	455	530	585		685
ST/SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(2)	kW	69,9	78,8	85,6	95,2	103	114	125	137	160	178	199	211
ST/SC-EXC	COP (EN 14511:2022)	(2)	-	3,22	3,24	3,27	3,26	3,26	3,29	3,32	3,31	3,32	3,28		3,24
ST/SC-EXC	Холодильные контуры		Nr							2					
ST/SC-EXC	Кол-во компрессоров		Nr	3				4				5		6	
ST/SC-EXC	Тип компрессоров		-						SCF	ROLL					
ST/SC-EXC	Хладагент		-						R-	32					
ST/SC-EXC	Номинальное напряжение		V							3~/50					
SC-EXC	Уровень звуковой мощности	(3)	dB(A)	87	88	89	89	89	91	91	91	92	92	93	93
EN-EXC	Уровень звуковой мощности	(3)	dB(A)	84	85	86	86	86	86	87	87	88	89	90	90
	a ErP (Energy Related Products)			0 ==	0.00	0.00					4				
	ДНИЙ климат - W35	(4)		3,73 146	3,90 153	3,92 154	4,10 161	4,08	4,05 159	4,00 157	4,10 161	-			
<u>η_{s,H}</u>															
Размер		_	AN-YSC4	90.3	100.3	110.4	_			5.4 <u>16</u>			210.6	225.6	
	 Холодильная мощность (EN 14511:2022) 	(1)	kW	235	255	275	300				405	480	530	585	630
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	83,7	94,1	102	116				155	172	200	207	227
ST/SC-PRM	EER (EN 14511:2022)	(1)	-	2,80	2,71	2,70	2,5					2,80	2,65	2,83	2,77
ST/SC-PRM	SEER	(4)	- 0/	4,26	4,24	4,35	4,3					4,64	4,62	4,66	4,64
ST/SC-PRM ST/SC-PRM	<u>ηs.c</u> ◆ Тепловая мощность (EN 14511:2022)	(4)	% kW	<u>167,2</u> 	166,7 265	171,0 285	171, 315				70,1 420	182,8 500	181,8 555	183,4	182,5 655
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(2)	kW	76,4	85,5	92,3	102				134 	157	175	191	206
ST/SC-PRIM	СОР (EN 14511:2022)	(2)	KVV	3,15	3,10	3,09	3,0				3,13	3,19	3,17	3,18	3,18
	Холодильные контуры	(2)	Nr	٥,١٥	3,10	3,03	3,0	J J,I		,io . 2	٥,١٥	٥,١٥	5,17	3,10	3,10
ST/SC-PRM	Кол-во компрессоров		Nr	3				4		_		5		6	
ST/SC-PRM									SCF	ROLL		-			
ST/SC-PRM										-32					
	Номинальное напряжение		V							3~/50					
SC-PRM	Уровень звуковой мощности	(3)	dB(A)	87	88	88	88	90			90	91	91	92	92
EN-PRM	Уровень звуковой мощности	(3)	dB(A)	85	86	86	86			37	87	88	89	90	90
	a ErP (Energy Related Products)														
SCOP - CPE,	ЦНИЙ климат - W35	(4)		3,47	3,64	3,83	3,8				3,82	3,91	-	-	
$\eta_{\text{S,H}}$		(4)	%	136	143	150	152				150	153	-	-	-
(1) Лациыс г	ассчитанные в соответствии со стандартом Е	VI 14511·203	22 относатся	к спелую	MNIIII	(4) Ланны	ie naccui	итаны в со	отротстві	ALL C TROPI	пилипед	стацпарт	a ENI 1/19	225-2018	

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

(4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях) и правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

температура воздуха = 35°C (2) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°C; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°C) М.Т. (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при

 ⁽д) Значении зауковом инфинсти относится и соорудованию при полном нагрузяе, при номинальных условиях испытаний. Измерения проводатся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

PRM Premium

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов

ECOBREEZE (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии

R Полная рекуперация энергии (только WSAT-YSC4) ИСПАРИТЕЛЬ

PFCP

SFSTR

RE-25

MHP

SDV

RPRI

PFGP

PSWSA

PPBM

PGCC

CCME

RE-39

IVFEDT

только WSAT-YSC4:

AMMSX

EVPHE пластинчатый теплообменник (Стандартно)

EVFTP Трубный испаритель

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Стандартная акустическая конфигурация (Стандартно)

Акустическая конфигурация со звукоизоляцией компрессора SC

(Стандартно)

ΕN Особо малошумная акустическая конфигурация

НИЗКАЯ ТЕМПЕРАТУРА НАГРЕВАЕМОЙ ВОДЫ (ТОЛЬКО WSAT-YSC4):

Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)

Устройство для снижения пускового тока (разм. 70.4÷160.4)

Защита электрического щита от замерзания до минимальной

Запорные клапаны на нагнетании и всасывании компрессора

Насосная группа оснащена звукопоглощающей облицовкой

Защитные панели микроканальных теплообменников

Микроканальный теплообменник с эпоксидным покрытием

Защита электрического щита от замерзания до минимальной

Регулирование расхода. внешнего инверторного насоса, в

Защитная решетка теплообменника и компрессора

Реле дифференциального давления со стороны воды имеет защиту

Рекуперация: не требуется (стандарт)

наружной температуры -25°C

Антисейсмические виброопоры

Датчик утечки хладагента в корпусе

Манометры высокого и низкого давления

DML4-20 Ограничение потребляемой мощности по сигналу 4-20 mA **DMLO-10** Ограничение потребляемой мощности по сигналу 0-10 V

Низкая температура воды

аксессуары

1PM	Гидромодуль с 1 насосом
1PMV	Гидромодуль со стороны потребителя с 1-м инверторным насосом
1PMH	Гидромодуль с 1-м высоконапорным насосом
1PMVH	Гидромодуль со стороны потребителя с 1-м высоконапорным
	инверторным насосам
2PM	Гидрогруппа с двумя насосами
2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным
	приводом
2PMH	Гидромодуль со стороны потребителя с 2-мя высоконапорными
	насосами
2PMVH	Гидромодуль со стороны потребителя с 2-мя высоконапорными
	инверторными насосами
IVFDT	Инверторный привод изменяет расход в зависимости от температуры
	на стороне источника
IFWX	Стальной сетчатый фильтр на стороне воды
CSVX	Два механических запорных клапана
ACC	Накопительный бак
AMMX	Резиновые антивибрационные опоры
CONTA2	Счетчик энергии
RCMRX	Выносной микропроцессорный пульт управления
PSX	Напряжение сети питания
CMSC10	Модуль последовательной связи с системой диспетчеризации на
	базе протокола LonWorks
CMSC9	Модуль для последовательного соединения с системой
	централизованного управления по протоколу Modbus
CMSC11	Модуль последовательной связи с протоколом BACnet-IP
SCP4	Коррекция уставки сигналом 0-10 В
SPC1	Корректировка установленного значения температуры воды на

CCCA1

только WSAN-YSC4:

CCCA Теплообменник конденсатора медь/алюминий с акриловым

покрытием

от замерзания

Конденсатор с алюминиевым покрытием Energy Guard DCC

PGCCH Защитные решетки от града **PGFC** Защитная решетка теплообменника

наружной температуры -39°C

зависимости от разницы температур

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Функция ECOSHARE для автоматического управления группы машин

выхоле по сигналу 4-20 mA

ECS

NEW PRODUCT

SPINchiller4 PL

Многоцелевой обратимый тепловой насос

С воздушным охлаждением Наружная установка

Мощность от 225 до 664 kW

- ✓ Спиральные компрессоры, электронно-коммутируемые осевые вентиляторы и два независимых контура, обеспечивающих повышенную надежность
- ✓ Технология с применением поливалентных хладонов, позволяет применять их в 4-трубных системах
- ✓ Хладагент R32 GWP = 675
- ✓ Температура хозяйственной воды до 55°C
- ✓ Пластинчатый или кожухотрубный теплообменник
- ✓ Два варианта звукоизоляции: стандартный и сверх-бесшумный
- ✓ Управление работой в модульной конфигурации с установкой до 7 устройств каскадом
- ✓ Встроенные гидромодули со стороны нагрева, охлаждения

функции и характеристики

охлаждение



Intelliplant

Размеры и зоны обслуживания

РАЗМЕ	P ►► WSAN-	YSC4 PL	90.4	100.4	110.4	120.4	130.4	145.4	160.4	175.4	215.6	230.6	250.6	265.6
SC-EXC	А - Длина	mm	4114	4114	4114	4114	4114	5091	5091	5091	6066	6066	7033	7045
SC-EXC	В - Ширина	mm	2250	2250	2250	2250	2250	2250	2250	2250	2250	2250	2250	2250
SC-EXC	С - Высота	mm	2530	2530	2530	2530	2530	2530	2530	2530	2530	2530	2530	2530
SC-EXC	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
SC-EXC	A2	mm	700	700	700	700	700	700	700	700	700	700	700	700
SC-EXC	B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
SC-EXC	B2	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
SC-EXC	Рабочий вес	kg	2604	2805	2911	3027	3151	3698	3903	4042	4480	4677	5590	5875

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов

ECOBREEZE (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

Полная рекуперация энергии (Стандартно)

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

Конфигурация для 4-х трубной системы

ИСПАРИТЕЛЬ

EVPHE пластинчатый теплообменник (Стандартно)

EVFTP Трубный испаритель

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Акустическая конфигурация со звукоизоляцией компрессора

(Станлартно)

EN Особо малошумная акустическая конфигурация

технические характеристики

Размер	N	WSAN	I-YSC4 PL	90.4	100.4	110.4	120.4	130.4	145.4	160.4	175.4	215.6	230.6	250.6	265.6
	ЦЕНИЕ 0% - НАГРЕВ 100%	WOAI	FISC4 FE	30.4	100.4	110.4	120.4	130.4	145.4	100.4	175.4	215.0	230.0	250.0	205.0
SC-EXC	Холодильная мощность (EN 14511:2022)	(1)	kW	225	250	276	307	336	366	409	449	532	573	627	664
SC-EXC	Полная потребляемая мощность (EN 14511:2022)		kw	72,4	84,9	96,5	108	119	126	141	156	195	210	217	237
SC-EXC	EER (EN 14511:2022)	(1)	KVV	3.11	2,95	2.87	2,85	2,83	2,90	2,90	2,87	2,73	2,73	2.89	2.81
SC-EXC	SEER			4.82		4.61	-		4.82	-			-	,	- , -
	· ·	(4)			4,70		4,74	4,80		4,68	4,65	4,88	4,91	4,94	4,94
SC-EXC	η _{s,c}	(4)	%	190,0	185,0	182,0	187,0	189,0	190,0	184,0	183,0	192,0	193,0	195,0	195,0
	ЦЕНИЕ 100% - НАГРЕВ 0%	(0)		204	050	205	047	240	070	440	400			0.40	
SC-EXC	Тепловая мощность (EN 14511:2022)	(2)	kW	231	258	285	317	349	376	419	463	554	599	648	694
SC-EXC	Полная потребляемая мощность (EN 14511:2022		kW	71,8	80,1	89,3	97,5	106	115	128	140	172	182	199	213
SC-EXC	COP (EN 14511:2022)	(2)	-	3,22	3,23	3,19	3,25	3,31	3,27	3,27	3,31	3,23	3,29	3,26	3,25
	<u> [ЕНИЕ 100% - НАГРЕВ 100%</u>														
SC-EXC	Холодильная мощность (EN 14511:2022)	(3)	kW	221	250	280	315	346	374	418	465	555	601	642	687
SC-EXC	Тепловая мощность (EN 14511:2022)	(3)	kW	287	326	365	409	448	483	542	598	720	777	832	890
SC-EXC	Полная потребляемая мощность (EN 14511:2022) (3)	kW	67,0	76,6	86,0	95,1	103	111	125	135	168	179	192	207
SC-EXC	TER (EN 14511:2022)	(4)	-	7,58	7,53	7,50	7,61	7,69	7,70	7,67	7,86	7,60	7,69	7,66	7,63
SC-EXC	Холодильные контуры		Nr							2					
SC-EXC	Кол-во компрессоров		Nr					4						6	
SC-EXC	Тип компрессоров		-						SCR	OLL					
SC-EXC	Хладагент		-						R-	32					
SC-EXC	Номинальное напряжение		V						400/	3~/50					
SC-EXC	Уровень звуковой мощности	(5)	dB(A)	90	90	90	91	91	92	92	93	93	93	94	94
EN-EXC	Уровень звуковой мощности	(5)	dB(A)	85	85	85	86	87	88	88	89	89	90	90	91
Директив	sa ErP (Energy Related Products)	. ,													
	ДНИЙ климат - W35	(6)	-	3,88	3,91	3,86	3,93	4,01	3,89	3,94	3,93	-	-	-	-
Лѕн		(6)	%	152,0	153,0	151,0	154,0	157,0	153,0	155,0	154,0	-	-	-	-

(1) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды во внутреннем теплообменнике (испарителе) = 12/7°С; Воздух, поступающий во внешний теплообменник 35°C

(2) Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура воды с горячей стороны = 40/45°C; Температура воздуха, поступающего во внешний теплообменник 7°C D.B./6°C W.B.

(3) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды на холодной стороне = */7°С, температура воды на горячей стороне = */45°С (4) TER = (Тепловая мощность + Холодильная мощность) / (Общее потребление)

(5) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 96141 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.

(6) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) N° 811/2013 (номинальная тепловая мошность ≤70 кВт при определенных контрольных условиях), Регламент Комиссии (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при определенных контрольных условиях) и Регламент Комиссии (EC) № 2016/2281, также известный как Ecodesign Lot21.

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

аксессуары

IVFDT

CMSC11

CCCA	Теплообменник конденсатора медь/алюминий с акриловым покрытием
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC
IVFCDT	Инверторный привод изменяет расход в зависимости от температуры
	на стороне источника
IVFHDT	Переменный контроль расхода на стороне нагрева с помощью
	инвертора в зависимости от перепада температур
IVFCDTS	Инверторное регулирование расхода жидкости на стороне нагрева в
	зависимости от перепада температуры и по датчику давления
IVFHDTS	Инверторное регулирование расхода жидкости на стороне нагрева в
	зависимости от перепада температуры и по датчику давления
IVFCDTF	Регулировка расхода жидкости на стороне охлаждения с помощью инвертора
	в зависимости от перепада температуры с помощью расходомера
IVFHDTF	Регулирование расхода жидкости на стороне нагрева с помощью инвертора
	в зависимости от перепада температуры и по датчику давления
PFGP	Насосная группа оснащена звукопоглощающей облицовкой

на стороне источника **CSVX** Два механических запорных клапана

IFWX Стальной сетчатый фильтр на стороне воды

CMSC10 Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks

Модуль последовательной связи с протоколом BACnet-IP

Инверторный привод изменяет расход в зависимости от температуры

CMSC9 Модуль для последовательного соединения с системой централизованного управления по протоколу Modbus

RCMRX Выносной микропроцессорный пульт управления

CONTA3 Счетчик электроэнергии M-bus

CONTA4 Счетчики электроэнергии и насосная группа M-bus

RE-25 Защита электрического щита от замерзания до минимальной наружной температуры -25°C

DML4-20 Ограничение потребляемой мощности по сигналу 4-20 mA

DMLO-10 Ограничение потребляемой мощности по сигналу 0-10 V **ECS** Функция ECOSHARE для автоматического управления группы машин

RPRI Датчик утечки хладагента в корпусе

SFSTR Устройство для снижения пускового тока (разм. 70.4÷160.4)

PFCC Конденсаторы для увеличения коэффициента мощности (cosfi>0,95)

SPC1 Коррекция уставки сигналом 4-20 mA

SCP4 Коррекция уставки сигналом 0-10 V

PSX Напряжение сети питания

AMMX Резиновые антивибрационные опоры

AMMSX Антисейсмические виброопоры

PGFC Защитная решетка теплообменника

PGCCH Защитные решетки от града

PSWSA Реле дифференциального давления со стороны воды имеет защиту от замерзания **2PMCS**

Гидромодуль сторона охлаждения 2 on/off насоса

2PMCS2V Hydropack на стороне подачи потребителю (работа на охлаждение) с 2 насосами и 2 инверторами

1+1PMCS Гидромодуль сторона охлаждения 1+1 on/off насосы.

1+1PMCSV Гидромодуль сторона охлаждения 1+1 Инверторные насосы.

Гидромодуль сторона нагрева 2 on/off насоса

2PMMS2VHydropack на стороне подачи потребителю (работа на нагрев) с 2 насосами и 2 инверторами

1+1PMMS Гидромодуль сторона нагрева 1+1 on/off насосы

1+1PMMSV Гидромодуль сторона нагрева 1+1 Инверторные насосы.

Расходомеры на охлаждающей и нагревающей сторонах

Переключающий клапан с двойными предохранительными клапанами **RDVS** MISTER1 Счетчик энергии за счет перепада давления и датчиков перепада температур

MISTER2 Счетчик энергии по расходу жидкости и разности температур с

единичными зондами (доступен только с опциями: FMCHX) CLIVET

SPINchiller4

Реверсивный тепловой насос

С воздушным охлаждением Наружная установка

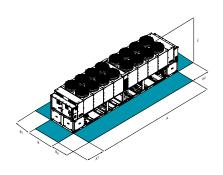
Мощность от 670 до 1260 kW

- Спиральные компрессоры, и электронно-коммутируемые осевые вентиляторы и четыре независимых контура, обеспечивающих повышенную надежность
- Повышенная энергоэффективность при полной нагрузке и сезонная энергоэффективность (вариант «Excellence»), высокая сезонная энергоэффективность в сочетании с компактными габаритами (вариант «Premium»)
- ✓ Хладагент R32 GWP = 675
- ✓ Температура хозяйственной воды до 55°С
- ✓ Пластинчатый или кожухотрубный теплообменник
- ✓ Три варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до
- ✓ Встроенный гидромодуль, аккумулирующий бак и частичная рекуперация

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о с оответствующих продуктах представлена на сайте www.eurovent-certification.com ErP

функции и характеристики

охлаждение


Спиральный расширительный

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

PA3MEP PA3MEP		▶► WSAN-YSC4	260.8	290.8	320.8	345.9	370.10	420.12	450.12
SC-EXC	А - Длина	mm	10150	10150	10150	11122	12094	12094	13070
SC-EXC	В - Ширина	mm	2250	2250	2250	2250	2250	2250	2250
SC-EXC	С - Высота	mm	2520	2520	2520	2520	2520	2520	2520
SC-EXC	A1	mm	1500	1500	1500	1500	1500	1500	1500
SC-EXC	A2	mm	1500	1500	1500	1500	1500	1500	1500
SC-EXC	B1	mm	1200	1200	1200	1200	1200	1200	1200
SC-EXC	B2	mm	1200	1200	1200	1200	1200	1200	1200

PA3ME	P	▶▶ WSAN-YSC4	260.8	290.8	315.9	345.9	370.10	420.12	450.12	480.12
SC-PRM	А - Длина	mm	8200	8200	9172	9172	10150	10150	12094	12094
SC-PRM	В - Ширина	mm	2250	2250	2250	2250	2250	2250	2250	2250
SC-PRM	С - Высота	mm	2520	2520	2520	2520	2520	2520	2520	2520
SC-PRM	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500
SC-PRM	A2	mm	1500	1500	1500	1500	1500	1500	1500	1500
SC-PRM	B1	mm	1200	1200	1200	1200	1200	1200	1200	1200
SC-PRM	B2	mm	1200	1200	1200	1200	1200	1200	1200	1200

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании

SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence

SC-PRM С шумоизолированными компрессорами (SC)-Премиум

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

PRM Premium

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов

ECOBREEZE (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии

ИСПАРИТЕЛЬ

EVPHE пластинчатый теплообменник (Стандартно)

EVFTP Трубный испаритель

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Стандартная акустическая конфигурация (Стандартно)

SC Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

ΕN Особо малошумная акустическая конфигурация

технические характеристики

Размер	▶▶ WS/	AN-YSC4	260.8	290.8	320.8	34!	5.9	370.10	420.12	450.12
ST/SC-EXC • Холодильная мощность (EN 14511:2022)	(1)	kW	710	780	860	93	10	1000	1111	1211
ST/SC-EXC Полная потребляемая мощность (EN 14511:2022)	(1)	kW	228	256	286	30	16	326	376	405
ST/SC-EXC EER (EN 14511:2022)	(1)	-	3,12	3,05	3,01	3,0	03	3,06	2,96	2,99
ST/SC-EXC SEER	(4)	-	4,82	4,75	4,70	4,	31	4,86	4,83	4,84
ST/SC-EXC η _{s,c}	(4)	%	189,8	187,0	185,0	189	9,4	191,4	190,2	190,6
ST/SC-EXC ◆ Тепловая мощность (EN 14511:2022)	(2)	kW	750	830	910	98	15	1060	1169	1269
ST/SC-EXC Полная потребляемая мощность (EN 14511:2022)	(2)	kW	228	250	274	29	97	319	356	389
ST/SC-EXC COP (EN 14511:2022)	(2)	-	3,29	3,32	3,32	3,3	32	3,33	3,28	3,26
ST/SC-EXC Холодильные контуры		Nr				4				
ST/SC-EXC Кол-во компрессоров		Nr	8	8	8	g)	10	12	12
ST/SC-EXC Тип компрессоров		-				SCR	OLL			
ST/SC-EXC Хладагент		-				R-3	32			
ST/SC-EXC Номинальное напряжение		V				400/3	3~/50			
ST-EXC Уровень звуковой мощности	(3)	dB(A)	98	98	98	9	9	100	100	100
SC-EXC Уровень звуковой мощности	(3)	dB(A)	94	94	94	9	5	95	95	96
EN-EXC Уровень звуковой мощности	(3)	dB(A)	89	90	90	9	1	91	92	92
Размер	▶► WS/	AN-YSC4	260.8	290.8	315.9	345.9	370.10	420.12	450.12	480.12
ST/SC-PRM • Холодильная мощность (EN 14511:2022)	(1)	kW	670	740	815	885	960	1060	1171	1260
ST/SC-PRM Полная потребляемая мощность (EN 14511:2022)	(1)	kW	238	272	290	327	343	400	414	454
ST/SC-PRM EER (EN 14511:2022)	(1)	-	2,82	2,72	2,81	2,71	2,80	2,65	2,83	2,77
ST/SC-PRM SEER	(4)	-	4,56	4,56	4,59	4,56	4,62	4,60	4,64	4,63
ST/SC-PRM nsc	(4)	%	179.4	179.3	180.4	179.3	181.9	181 2	182.8	182.0

31/30-11(14)	NONOGUNBIIGN MOMITOCID (EN 14311.2022)		IX V V	070	770	013	003		1000	117.1	1200
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	238	272	290	327	343	400	414	454
ST/SC-PRM	EER (EN 14511:2022)	(1)	-	2,82	2,72	2,81	2,71	2,80	2,65	2,83	2,77
ST/SC-PRM	SEER	(4)	-	4,56	4,56	4,59	4,56	4,62	4,60	4,64	4,63
ST/SC-PRM	η _{s,c}	(4)	%	179,4	179,3	180,4	179,3	181,9	181,2	182,8	182,0
ST/SC-PRM	 Тепловая мощность (EN 14511:2022) 	(2)	kW	700	770	850	920	1000	1109	1219	1309
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(2)	kW	224	248	269	291	314	350	382	411
ST/SC-PRM	COP (EN 14511:2022)	(2)	-	3,12	3,10	3,16	3,16	3,19	3,17	3,19	3,18
ST/SC-PRM	Холодильные контуры		Nr				4	1			
ST/SC-PRM	Кол-во компрессоров		Nr	8	8	9	9	10	12	12	12
ST/SC-PRM	Тип компрессоров		-				SCR	OLL			
ST/SC-PRM	Хладагент		-				R-	32			
ST/SC-PRM	Номинальное напряжение		V				400/3	3~/50			
ST-PRM	Уровень звуковой мощности	(3)	dB(A)	97	97	98	98	99	99	100	100
SC-PRM	Уровень звуковой мощности	(3)	dB(A)	93	93	93	94	94	94	95	95
EN-PRM	Уровень звуковой мощности	(3)	dB(A)	89	90	91	91	91	92	93	93

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

(2) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°C; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°C) М.Т. (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013. (4) SEER и SCOP в соответствии с EN 14825: 2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

аксессуары

CCCA	Теплообменник конденсатора медь/алюминий с акриловым покрытием
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC
MHP	Манометры высокого и низкого давления
SDV	Запорные клапаны на нагнетании и всасывании компрессора
PFGP	Насосная группа оснащена звукопоглощающей облицовкой
IVFDT	Инверторный привод изменяет расход в зависимости от температуры
	на стороне источника
ACC	Накопительный бак
CSVX	Два механических запорных клапана
IFWX	Стальной сетчатый фильтр на стороне воды
CMSC10	Модуль последовательной связи с системой диспетчеризации на базе
	протокола LonWorks
CMSC9	Модуль для последовательного соединения с системой
	централизованного управления по протоколу Modbus

CMSC11 Модуль последовательной связи с протоколом BACnet-IP **RCMRX** Выносной микропроцессорный пульт управления CONTA2 Счетчик энергии

RE-25 Защита электрического щита от замерзания до минимальной наружной температуры -25°C

DML4-20 Ограничение потребляемой мощности по сигналу 4-20 mA

DMLO-10 Ограничение потребляемой мощности по сигналу 0-10 V

ECS Функция ECOSHARE для автоматического управления группы машин

RPRI Датчик утечки хладагента в корпусе **SFSTR** Устройство для снижения пускового тока (разм. 70.4÷160.4)

PFCP Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)

SPC1 Коррекция уставки сигналом 4-20 mA SCP4 Коррекция уставки сигналом 0-10 V

PSX Напряжение сети питания

ΔΜΜΧ Резиновые антивибрационные опоры **AMMSX** Антисейсмические виброопоры

PGFC Защитная решетка теплообменника **PGCCH** Защитные решетки от града 2PM

Гидрогруппа с двумя насосами 2PMV Гидрогруппа на стороне потребителя с 2 насосами с инверторным

1P1SB Группа жидкостной теплопередачи со стороны рабочего контура с 1+1

однорежимным насосом 1P1SBV Группа жидкостной теплопередачи со стороны рабочего контура с 1+1

инверторным насосом **PSWSA** Реле дифференциального давления со стороны воды имеет защиту от

замерзания

SPINchiller⁴

Водяной чиллер

Воздушное охлаждение Наружная установка

Мощность от 720 до 939 kW

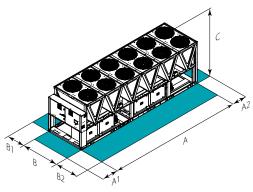
Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- Спиральные теплообменники компрессоры, воздушные микроканального типа и два независимых контура для высокой
- ✓ Версия Excellence с очень высокой сезонной эффективностью, версия Premium с высокой сезонной эффективностью при компактных размерах
- ✓ Хладагент R32 GWP = 675
- ✓ Возможность работы при температуре окружающего воздуха до +50°C, температура охлажденной воды до -8°C
- ✓ Пластинчатый или кожухотрубный теплообменник
- ✓ Три варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- √ Встроенный гидромодуль, аккумулирующий бак и частичная рекуперация

функции и характеристики

Воздушное

охлаждение


Электронный ECOBREEZE расширительный клапан

Intelliplant

Размеры и зоны обслуживания

Наружная

установка

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MI	EP	▶▶ WSAT-YSC4	265.6	290.7	310.7	350.8
SC-EXC	А - Длина	mm	6680	6680	6680	7920
SC-EXC	В - Ширина	mm	2228	2228	2228	2228
SC-EXC	С - Высота	mm	2535	2535	2535	2535
SC-EXC	A1	mm	1500	1500	1500	1500
SC-EXC	A2	mm	700	700	700	700
SC-EXC	B1	mm	1200	1200	1200	1200
SC-EXC	B2	mm	2250	2250	2250	2250
SC-EXC	Рабочий вес	ka	3954	4147	4192	4801

РАЗМЕ	P	▶▶ WSAT-YSC4	265.6	290.7	310.7	350.8
SC-PRM	А - Длина	mm	6680	6680	6680	7920
SC-PRM	В - Ширина	mm	2228	2228	2228	2228
SC-PRM	С - Высота	mm	2535	2535	2535	2535
SC-PRM	A1	mm	1500	1500	1500	1500
SC-PRM	A2	mm	700	700	700	700
SC-PRM	B1	mm	1200	1200	1200	1200
SC-PRM	B2	mm	2250	2250	2250	2250
SC-PRM	Рабочий вес	kg	3954	4147	4192	4801

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence

SC-PRM C шумоизолированными компрессорами (SC)-Премиум

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

PRM Premium

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

CREFB Устройство для снижения потребляемой мощности вентиляторов

ECOBREEZE (Стандартно)

CREFP Устройство снижения расхода вентиляторов наружной секции с

регулируемой скоростью (фазовая отсечка) (Стандартно в версии

Premium)

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

n Частичная рекуперация энергии

ИСПАРИТЕЛЬ

EVPHE пластинчатый теплообменник (Стандартно)

EVFTP Трубный испаритель

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Стандартная акустическая конфигурация (Стандартно)

SC Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

ΕN Особо малошумная акустическая конфигурация

технические характеристики

Размер		▶► WS	AT-YSC4	265.6	290.7	310.7	350.8
ST/SC-EXC	 Холодильная мощность (EN 14511:2022) 	(1)	kW	720	780	814	939
ST/SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	232	259	279	314
ST/SC-EXC	EER (EN 14511:2022)	(1)	-	3,10	3,01	2,92	3,00
ST/SC-EXC	SEER	(3)	-	5,28	5,26	5,23	5,22
ST/SC-EXC	η _{s,c}	(3)	%	208,2	207,4	206,2	205,8
ST/SC-EXC	Холодильные контуры		Nr		2		
ST/SC-EXC	Кол-во компрессоров		Nr	6	7	1	8
ST/SC-EXC	Тип компрессоров		-		SCR	OLL	
ST/SC-EXC	Хладагент		-		R-:	32	
ST/SC-EXC	Номинальное напряжение		V		400/3	3 [~] /50	
ST-EXC	Уровень звуковой мощности	(2)	dB(A)	97	97	98	98
SC-EXC	Уровень звуковой мощности	(2)	dB(A)	94	94	95	95
EN-EXC	Уровень звуковой мощности	(2)	dB(A)	90	90	91	91

Размер		▶► WS/	AT-YSC4	265.6	290.7	310.7	350.8
ST/SC-PRM	 Холодильная мощность (EN 14511:2022) 	(1)	kW	720	780	814	939
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	232	259	279	314
ST/SC-PRM	EER (EN 14511:2022)	(1)	-	3,10	3,01	2,92	3,00
ST/SC-PRM	SEER	(3)	-	5,03	5,01	4,98	4,94
ST/SC-PRM	η _{s,c}	(3)	%	198,2	197,4	196,2	194,6
ST/SC-PRM	Холодильные контуры		Nr		2	2	
ST/SC-PRM	Кол-во компрессоров		Nr	6	7	7	8
ST/SC-PRM	Тип компрессоров		-		SCR	OLL	
ST/SC-PRM	Хладагент				R-:	32	
ST/SC-PRM	Номинальное напряжение		V		400/3	3^/50	
ST-PRM	Уровень звуковой мощности	(2)	dB(A)	97	97	98	98
SC-PRM	Уровень звуковой мощности	(2)	dB(A)	94	94	95	95
EN-PRM	Уровень звуковой мощности	(2)	dB(A)	90	90	91	91

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

(2) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013

(3) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

аксессуары

CMSC11

2PM	Гидрогруппа с двумя насосами	S
2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным	S
	приводом	E
1P1SB	Группа жидкостной теплопередачи со стороны рабочего контура с 1+1	P
	однорежимным насосом	S
1P1SBV	Hydropack на стороне пользователя с одним инверторным насосом и	R
	одним резервным инверторным насосом	
IVFDT	Инверторный привод изменяет расход в зависимости от температуры	S
	на стороне источника	Α
IFWX	Стальной сетчатый фильтр на стороне воды	R
CSVX	Два механических запорных клапана	D
ACC	Накопительный бак	D
AMMX	Резиновые антивибрационные опоры	P
CONTA2	Счетчик энергии	P
RCMRX	Выносной микропроцессорный пульт управления	
PSX	Напряжение сети питания	P
CMSC10	Модуль последовательной связи с системой диспетчеризации на	P
	базе протокола LonWorks	С
CMSC9	Модуль для последовательного соединения с системой	R
	централизованного управления по протоколу Modbus	

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Модуль последовательной связи с протоколом BACnet-IP

SCP4	Коррекция уставки сигналом 0-10 V
SPC1	Коррекция уставки сигналом 4-20 mA

ECS Функция ECOSHARE для автоматического управления группы машин PFCC Конденсаторы для увеличения коэффициента мощности (cosfi>0.95) SFSTR Устройство для снижения пускового тока (разм. 70.4÷160.4)

RE-25 Защита электрического щита от замерзания до минимальной наружной температуры -25°C

SDV Запорные клапаны на нагнетании и всасывании компрессора

AMMSX Антисейсмические виброопоры RPRI Датчик утечки хладагента в корпусе

DML4-20 Ограничение потребляемой мощности по сигналу 4-20 mA Ограничение потребляемой мощности по сигналу 0-10 V **PFGP** Насосная группа оснащена звукопоглощающей облицовкой PSWSA Реле дифференциального давления со стороны воды имеет защиту

от замерзания

PPBM Защитные панели микроканальных теплообменников PGCC Защитная решетка теплообменника и компрессора CCME Микроканальный теплообменник с эпоксидным покрытием **RE-39** Защита электрического щита от замерзания до минимальной

наружной температуры -39°C

SPINchiller³ FC

Водяной чиллер со свободным охлаждением

Воздушное охлаждение Наружная установка

Мощность от 299 до 1114 kW

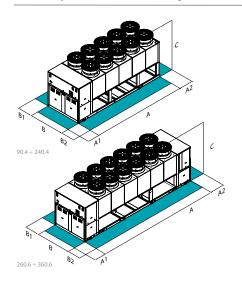
- ✓ Спиральные компрессоры и два независимых обеспечивающих повышенную надежность
- ✓ Техническое решение для применения в условиях холодного климата или в составе технологических установок
- ✓ Хладагент R410A GWP = 2088
- ✓ Возможность работы при температуре окружающего воздуха до -39°C, температура охлажденной воды до -8°C
- ✓ Прямое и непрямое естественное охлаждение (без гликоля)
- Два варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Встроенный гидромодуль и частичная рекуперация

функции и характеристики

ErP

охлаждение

Спиральный расширительный



COOLING

HydroPack

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

PA3MEP ►► WSAT-XSC	23 FC	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
А - Длина	mm	4543	4543	4543	4543	5518	5518	5518	6454	6454	6454
В - Ширина	mm	2243	2243	2243	2243	2243	2243	2243	2243	2243	2243
С - Высота	mm	2668	2668	2668	2668	2668	2668	2668	2668	2668	2668
A1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
A2	mm	700	700	700	700	700	700	700	700	700	700
B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
B2	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Эксплуатационная масса	kg	3940	3994	4037	4105	4593	4645	4899	5758	5851	5899

PA3MEP ►► WSAT-XS	SC3 FC	260.6	280.6	300.6	320.6	340.6	360.6
А - Длина	mm	8648	8648	10598	10598	10598	10598
В - Ширина	mm	2243	2243	2243	2243	2243	2243
С - Высота	mm	2668	2668	2668	2668	2668	2668
A1	mm	1500	1500	1500	1500	1500	1500
A2	mm	1500	1500	1500	1500	1500	1500
B1	mm	1200	1200	1200	1200	1200	1200
B2	mm	1200	1200	1200	1200	1200	1200
Эксплуатационная масса	kg	7184	7274	8632	8714	8817	8920

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

EN Особо малошумная акустическая конфигурация

ЕСТЕСТВЕННОЕ ОХЛАЖДЕНИЕ:

СВОБОДНОЕ-ОХЛАЖДЕНИЕ прямое (Стандартно)

Безгликолевый FREE-COOLING **FCI**

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

CREFP Устройство для снижения потребляемой мощности вентиляторов

наружной секции с регулированием скорости (фазовый регулятор)

(Стандартно в акустических конфигурации sc)

CREFB Устройство для снижения потребляемой мощности вентиляторов

ECOBREEZE (Стандартно в акустических конфигурации en)

ТИП ВНЕШНЕЙ СЕКЦИИ ВЕНТИЛЯТОРОВ:

AXIX Высокоэффективный диффузор для осевого вентилятора - АхіТор (Стандартно NAXI Высокоэффективный диффузор для осевого вентилятора - АхіТор: не требуется

технические характеристики

Размер		▶▶ WSAT-X	SC3 FC	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4	260.6	280.6	300.6	320.6	340.6	360.6
Режим F	ree-Cooling ВЫКЛ																		
SC-EXC	Холодильная мощность	(1)	kW	299	325	361	397	452	509	566	632	664	718	799	845	955	1008	1059	1114
SC-EXC	Полная потребляемая мощность блока	(1)	kW	79,5	86,8	96,6	110	123	139	164	174	193	214	235	255	265	286	308	330
SC-EXC	EER при полной нагрузке	(1)	-	3,76	3,75	3,74	3,62	3,68	3,65	3,46	3,64	3,45	3,36	3,4	3,31	3,61	3,53	3,44	3,38
SC-EXC	SEER	(4)	-	4,64	4,65	4,62	4,56	4,66	4,65	4,59	4,64	4,62	4,56	4,61	4,59	4,60	4,65	4,62	4,56
SC-EXC	η _{s,c}	(4)	%	182,6	183,0	181,8	179,4	183,4	183,0	180,6	182,6	181,8	179,4	181,4	180,6	181,0	183,0	181,8	179,4
СВОБОД	НОЕ ОХЛАЖДЕНИЕ ДИРЕТТО НА																		
SC-EXC	Холодильная мощность	(2)	kW	278	284	294	304	425	439	448	570	574	582	734	740	885	894	913	939
SC-EXC	Полная потребляемая мощность блока	(2)	kW	9,8	9,9	9,9	10,1	13	13,3	13,5	16,5	16,6	16,7	20,2	20,2	26,6	26,6	26,6	26,6
SC-EXC	EER при полной нагрузке	(2)	-	28,43	28,83	29,85	30,16	32,77	33,08	33,31	34,63	34,62	34,85	36,34	36,63	33,27	33,61	34,32	35,3
SC-EXC	Холодильные контуры		Nr									2							
SC-EXC	Кол-во компрессоров		Nr						4							(6		
SC-EXC	Тип компрессоров		-								SCR	OLL							
SC-EXC	Хладагент		-								R-4	10A							
SC-EXC	Номинальное напряжение		٧								400/3	3~/50							
SC-EXC	Уровень звуковой мощности	(3)	dB(A)	92	92	92	92	92	93	95	95	95	95	94	95	96	96	97	97
EN-EXC	Уровень звуковой мощности	(3)	dB(A)	87	87	87	87	88	89	91	92	92	92	90	91	92	93	93	93

⁽f) Данные относятся к следующим условиям: температура воды во внутреннем теплообменнике = 15/10 °C; гликоль 30%; температура воздуха во внешнем теплообменнике 30°C

аксессуары

2PM	Гидрогруппа с двумя насосами	CMSC9	Модуль для последовательного соединения с системой
3PM	Гидрогруппа с 3-мя насосами		централизованного управления по протоколу Modbus
4PM	Гидрогруппа с 4-мя насосами	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
6PM	Гидрогруппа с 6-мя насосами	SCP4	Коррекция уставки сигналом 0-10 V
2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным приводом	SPC2	Корректировка установленного значения температуры воды на выходе по наружному датчику
3PMV	Гидрогруппа на стороне потребителя с 3 насосами с инверторным	ECS	Функция ECOSHARE для автоматического управления группы машин
	приводом	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
6PMV	Гидрогруппа на стороне потребителя с 6 насосами с инверторным	SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)
	приводом	MHP	Манометры высокого и низкого давления
IVFDT	Инверторный привод изменяет расход в зависимости от температуры	SDV	Запорные клапаны на нагнетании и всасывании компрессора
	на стороне источника	WOGLY	единицы, поставляется без раствор гликоля (только FCI)
IFWX	Стальной сетчатый фильтр на стороне воды	A550	Бак накопитель 550л. (только FCD)
CSVX	Два механических запорных клапана	A700	Бак накопитель 700л. (только FCD)
CCCA	Теплообменник конденсатора медь/алюминий с акриловым	A900	Бак накопитель 900л. (только FCD)
	покрытием	PSPS	Подготовка для одного источника питания (260.6÷360.6)
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC	RE-20	Защита электрического щита от замерзания до минимальной
AMMX	Резиновые антивибрационные опоры		наружной температуры -20°C
PGFC	Защитная решетка теплообменника	RE-25	Защита электрического щита от замерзания до минимальной
PGCCH	Защитные решетки от града		наружной температуры -25°C
CONTA2	Счетчик энергии	RE-30	Защита электрического щита от замерзания до минимальной
RPRPDI	Датчик утечки хладагента в корпусе		наружной температуры -30°C
RCMRX	Выносной микропроцессорный пульт управления	RE-35	Защита электрического щита от замерзания до минимальной
PSX	Напряжение сети питания		наружной температуры -35°C
CMSC10	Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks	RE-39	Защита электрического щита от замерзания до минимальной наружной температуры -39°C
		CBS	Автоматические выключатели защиты от перегрузки (260.6÷360.6)

⁽²⁾ Данные только по естественному охлаждению (компрессоры выключены) относятся κ следующим условиям: температура воды во внутреннем теплообменнике = 15/10°C; температура воздуха во внешнем теплообменнике = 2°C C.T./1°C В.Т.; гликоль 30%

⁽³⁾ Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, FU 811/2013.

⁽⁴⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

MSRT-XSC3 + CEV-XT MSRN-XSC3 + CEV-XN

Чиллер с выносным конденсатором

MSRT-XSC3 + CEV-XT: только охлаждение MSRN-XSC3 + CEV-XN: реверсивный тепловой насос

Воздушное охлаждение Внутренняя установка

Мощность от 239 до 682 kW

совместимый

- √ Спиральные компрессоры и два независимых контура, обеспечивающих повышенную надежность
- ✓ Двухсекционная система жидкостной теплопередачи подходит для использования в условиях, при которых габариты и уровень шума имеют повышенное значение
- ✓ Повышенная энергоэффективность при компактных габаритных размерах (в варианте «Excellence»)
- ✓ Хладагент R410A GWP = 2088
- ✓ Температура горячей хозяйственной воды до 53°C, температура охлажденной воды до -8°C
- Два варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- Встроенный гидромодуль и частичная рекуперация

функции и характеристики

охлаждение

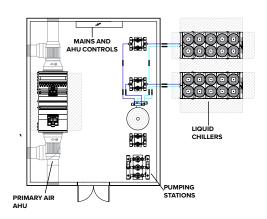
Axitop

аксессуары

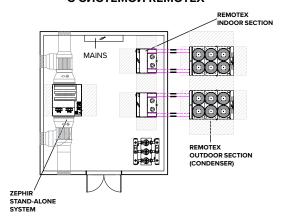
D	Частичная рекуперация энергии	CMSC9	Модуль для последовательного соединения с системой
В	Низкая температура воды		централизованного управления по протоколу Modbus
CREFB	Устройство для снижения потребляемой мощности вентиляторов	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
	ECOBREEZE	SCP4	Коррекция уставки сигналом 0-10 В
2PM	Гидрогруппа с двумя насосами	SPC2	Корректировка установленного значения температуры воды на
3PM	Гидрогруппа с 3-мя насосами		выходе по наружному датчику
2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным	ECS	Функция ECOSHARE для автоматического управления группы машин
	приводом	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
3PMV	Гидрогруппа на стороне потребителя с 3 насосами с инверторным	SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)
	приводом	RE-20	Защита электрического щита от замерзания до минимальной
IVFDT	Инверторный привод изменяет расход в зависимости от температуры		наружной температуры -20°C
	на стороне источника	RE-25	Защита электрического щита от замерзания до минимальной
IFWX	Стальной сетчатый фильтр на стороне воды		наружной температуры -25°C
CSVX	Два механических запорных клапана	RE-30	Защита электрического щита от замерзания до минимальной
AMRX	Резиновые антивибрационные опоры		наружной температуры -30°C
CONTA2	Счетчик энергии	RE-35	Защита электрического щита от замерзания до минимальной
RPRPDI	Датчик утечки хладагента в корпусе		наружной температуры -35°C
RCMRX	Выносной микропроцессорный пульт управления	RE-39	Защита электрического щита от замерзания до минимальной
PSX	Напряжение сети питания		наружной температуры -39°C
CMSC10	Модуль последовательной связи с системой диспетчеризации на	MHP	Манометры высокого и низкого давления
	базе протокола LonWorks	SDV	Запорные клапаны на нагнетании и всасывании компрессора
		PTCO	Подготовка к отгрузке с помощью контейнера

Компактный внутренний блок

В внутреннем блоке Remotex находятся все компоненты, необходимые для его работы, уже оптимизированные и протестированные компанией Clivet с целью обеспечения максимальной эффективности и надежности функционирования. В том числе внутри блока находятся уже готовые к использованию насосные группы Hydropack.


Модульность расширяемость

Простая добавка дополнительных модулей позволяет привести производительность агрегата в соответствие с реальными потребностями здания. Таким образом, даже затраты на его приобретение растягиваются во времени.



Уникальная система

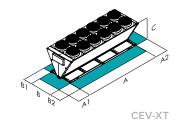
ТРАДИЦИОННЫЙ ДИЗАЙН

КОМПАКТНАЯ И ТИХАЯ КОНСТРУКЦИЯ С СИСТЕМОЙ REMOTEX

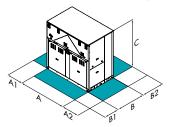
Remotex прекрасно работает в сочетании с ZEPHIR - инновационной автономной системой обработки наружного воздуха на основе термодинамической рекуперации: максимальное упрощение и быстрота реализации системы, еще больше свободного пространства и меньше шума, экономия энергии до 50 %

технические характеристики

Размер		▶ ► MS	RT-XSC3	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
-	Холодильные контуры		Nr						2				
-	Кол-во компрессоров		Nr						4				
-	Тип компрессоров		-					SCF	OLL				
-	Хладагент		-					R-4	10A				
-	Номинальное напряжение		V					400/	3~/50				
EXCELL	ENCE - ЗВУКОИЗОЛЯЦИЕЙ (STAN	NDARD))										
SC-EXC	 Холодильная мощность 	(1)	kW	259	278	309	345	399	440	502	559	614	682
SC-EXC	Полная потребляемая мощность блока	(1)	kW	81,7	89,6	97,5	109	123	141	160	171	190	207
SC-EXC	EER	(1)	-	3,17	3,10	3,17	3,18	3,24	3,12	3,13	3,27	3,23	3,29
SC-EXC	SEER	(3)	-	4,73	4,57	4,68	4,68	4,81	4,55	4,62	4,68	4,67	4,73
SC-EXC	η _{s,c}	(3)	%	186,0	179,9	184,2	184,3	189,3	179,0	181,9	184,2	183,9	186,0
SC-EXC	Размер		CEV-XT	90.0	105.0	115.0	120.0	145.0	160.0	180.0	200.0	210.0	230.0
SC-EXC	Кол-во вентиляторов		Nr	4	6	6	6	6	8	8	10	10	10
SC-EXC	Номинальный расход воздуха		l/s	23553	36583	36143	35507	34218	47084	46331	58684	57754	56458
SC-EXC	Уровень звуковой мощности	(2)	dB(A)	82	84	84	84	84	85	85	86	86	86
EXCELL	ENCE - СВЕРХНИЗКИЙ УРОВЕНЬ	ШУМА	\										
EN-EXC	 Холодильная мощность 	(1)	kW	260	281	306	352	398	435	504	549	612	680
EN-EXC	Полная потребляемая мощность блока	(1)	kW	80,9	88,4	99,3	106	123	142	160	176	192	207
EN-EXC	EER	(1)	-	3,22	3,18	3,08	3,32	3,24	3,06	3,15	3,12	3,19	3,29
EN-EXC	SEER	(3)	-	4,75	4,80	4,72	4,82	4,81	4,59	4,81	4,79	4,71	4,82
EN-EXC	$\eta_{s,c}$	(3)	%	186,8	189,1	185,9	189,9	189,4	180,5	189,5	188,7	185,4	189,9
EN-EXC	Размер		CEV-XT	115.0	120.0	130.0	150.0	160.0	190.0	200.0	230.0	240.0	280.0
EN-EXC	Кол-во вентиляторов		Nr	6	6	6	8	8	10	10	10	12	12
EN-EXC	Номинальный расход воздуха		l/s	28959	28247	27792	38367	37417	47772	46598	44348	55756	53050
EN-EXC	Уровень звуковой мощности	(2)	dB(A)	79	79	79	80	80	81	81	81	82	82


(1) Данные относятся к следующим условиям: температура внутреннего водообменника =

12/7°C; температура наружного воздуха = 35°C
(2) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013 Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.


SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence EN-EXC Сверх малошумный (EN) - Excellence

(3) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Размеры и зоны обслуживания

(OUTDOOR SELECTION)

MSRT-XSC3 (INDOOR SELECTION)

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

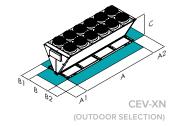
PA3MEP	MSRT-XSC3	90.4	100.4	110.4	120.4	140.4	160.4	180.4	200.4	220.4	240.4
А - Длина	mm	2350	2350	2350	2350	2350	2350	2350	2350	2350	2350
В - Ширина	mm	1150	1150	1150	1150	1150	1150	1150	1150	1150	1150
С - Высота	mm	2210	2210	2210	2210	2210	2210	2210	2210	2210	2210
A1	mm	700	700	700	700	700	700	700	700	700	700
A2	mm	700	700	700	700	700	700	700	700	700	700
B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
B2	mm	500	500	500	500	500	500	500	500	500	500
Рабочий вес	kg	1447	1611	1668	1722	1773	1818	2034	2092	2228	2357

РАЗМЕР	CEV-XT	90.0	105.0	115.0	120.0	130.0	145.0
А - Длина	mm	2750	3700	3700	3700	3700	3700
В - Ширина	mm	2230	2230	2230	2230	2230	2230
С - Высота	mm	2400	2400	2400	2400	2400	2400
A1	mm	1100	1100	1100	1100	1100	1100
A2	mm	700	700	700	700	700	700
B1	mm	1500	1500	1500	1500	1500	1500
B2	mm	1500	1500	1500	1500	1500	1500
Рабочий вес	kg	684	836	904	922	938	1018

PA3MEP	CEV-XT	150.0	160.0	180.0	190.0	200.0	210.0	230.0	240.0	280.0
А - Длина	mm	4700	4700	4700	5670	5670	5670	5670	6650	6650
В - Ширина	mm	2230	2230	2230	2230	2230	2230	2230	2230	2230
С - Высота	mm	2400	2400	2400	2400	2400	2400	2400	2400	2400
A1	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100
A2	mm	700	700	700	700	700	700	700	700	700
B1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500
B2	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500
Рабочий вес	kg	1238	1198	1356	1634	1664	1690	1820	1758	1944

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

технические характеристики


Размер		▶► MS	RN-XSC3	90.4	100.4	110.4	120.4	140.4	160.4
-	Холодильные контуры		Nr				2		
-	Кол-во компрессоров		Nr				4		
-	Тип компрессоров		-			SCF	ROLL		
-	Хладагент		-			R-4	10A		
-	Номинальное напряжение		V			400/	3^/50		
EXCELLI	ENCE - ЗВУКОИЗОЛЯЦИЕЙ (STAI	NDARD)						
SC-EXC	 Холодильная мощность 	(1)	kW	239	254	279	309	361	402
SC-EXC	Полная потребляемая мощность блока	(1)	kW	86,8	95,4	105	121	135	150
SC-EXC	EER	(1)	-	2,75	2,67	2,65	2,56	2,67	2,67
SC-EXC	SEER	(3)	-	4,13	4,07	4,03	4,00	4,11	4,10
SC-EXC	η _{s,c}	(3)	%	162,3	160,0	158,1	157,0	161,3	161,0
SC-EXC	 Тепловая мощность 	(4)	kW	280	307	333	366	419	476
SC-EXC	Полная потребляемая мощность блока	(4)	kW	88,5	96,9	105	115	130	145
SC-EXC	COP	(4)	-	3,16	3,17	3,18	3,19	3,22	3,28
SC-EXC	Размер		CEV-XN	105.0	105.0	115.0	130.0	160.0	170.0
SC-EXC	Кол-во вентиляторов		Nr	6	6	6	6	8	8
SC-EXC	Номинальный расход воздуха		I/s	36779	36779	36143	35703	48075	47272
SC-EXC	Уровень звуковой мощности	(2)	dB(A)	84	84	84	85	85	85
SC-EXC	Директива ErP (Energy Related Prod	ucts)							
SC-EXC	SCOP - СРЕДНИЙ климат - W35	(3)		3,80	3,81	3,83	3,69	3,89	3,72
SC-EXC	$\eta_{s,H}$	(3)	%	149	149	150	145	153	146
EXCELLI	ENCE - СВЕРХНИЗКИЙ УРОВЕНЬ	ШУМ	A .						
EN-EXC	 Холодильная мощность 	(1)	kW	239	258	280	319	361	410
EN-EXC	Полная потребляемая мощность блока	(1)	kW	85,9	93,8	104	116	134	146
EN-EXC	EER	(1)	-	2,78	2,75	2,70	2,75	2,70	2,81
EN-EXC	SEER	(3)	-	4,18	4,16	4,04	4,17	4,14	4,20
EN-EXC	η _{s,c}	(3)	%	164,2	163,5	158,5	163,6	162,7	164,9
EN-EXC	 Тепловая мощность 	(4)	kW	282	304	333	376	425	468
EN-EXC	Полная потребляемая мощность блока	(4)	kW	88,1	96,2	104	115	129	143
EN-EXC	COP	(4)	-	3,20	3,16	3,19	3,28	3,29	3,28
EN-EXC	Размер		CEV-XN	150.0	150.0	160.0	180.0	185.0	190.0
EN-EXC	Кол-во вентиляторов		Nr	8	8	8	8	10	10
EN-EXC	Номинальный расход воздуха		I/s	40357	40357	38374	36663	47773	52594
EN-EXC	Уровень звуковой мощности	(2)	dB(A)	80	80	80	81	81	81
EN-EXC	Директива ErP (Energy Related Prod	ucts)							
EN-EXC	SCOP - СРЕДНИЙ климат - W35	(3)	-	3,85	3,82	3,84	3,79	3,92	3,75
EN-EXC	η _{s,н}	(3)	%	151	150	151	149	154	147

⁽¹⁾ Данные относятся к следующим условиям: температура внутреннего водообменника = 12/7°C; температура наружного воздуха = 35°C
(2) Уровни звукового давления относятся к агрегатам, работающим при номинальной

(4) Данные относятся к следующим условиям: температура воды во внутреннем теплообменнике = 40/45°C; температура воздуха во внешнем теплообменнике = 7°C C.T. / 6°C B.T.

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях) и правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

Размеры и зоны обслуживания

A1 B B2

MSRN-XSC3 (INDOOR SELECTION)

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

PA3MEP	MSRN-XSC3	90.4	100.4	110.4	120.4	140.4	160.4
А - Длина	mm	2350	2350	2350	2350	2350	2350
В - Ширина	mm	1150	1150	1150	1150	1150	1150
С - Высота	mm	2210	2210	2210	2210	2210	2210
A1	mm	700	700	700	700	700	700
A2	mm	700	700	700	700	700	700
B1	mm	1200	1200	1200	1200	1200	1200
B2	mm	500	500	500	500	500	500
Эксплуатационн	ная kg	1657	1807	1870	1914	1980	2068
масса	ĸy	1037	1007	1070	1314	1500	2000

PA3MEP	CEV-XN	105.0	115.0	130.0	150.0	160.0	170.0	180.0	185.0	190.0
А - Длина	mm	3770	3770	3770	4750	4750	4750	4750	5720	5720
В - Ширина	mm	2230	2230	2230	2230	2230	2230	2230	2230	2230
С - Высота	mm	2420	2420	2420	2420	2420	2420	2420	2420	2420
A1	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100
A2	mm	700	700	700	700	700	700	700	700	700
B1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500
B2	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500
Эксплуатационная масса	kg	1082	1100	1174	1282	1386	1408	1532	1676	1706

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных

документах: EU 2016/2281, UE 813/2013, UE 811/2013 (3) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

SCREWLine⁴-i MF

Многоцелевой обратимый тепловой насос

С воздушным охлаждением Наружная установка

Мощность от 522 до 989 kW

- Технология с применением поливалентных хладонов, позволяет применять их в 4-трубных системах
- Два независимых контура, обеспечивающих повышенную належность
- √ Хладагент R513A GWP = 631
- ✓ Повышенная энергоэффективность при полной нагрузке и в сезонная энергоэффективность (вариант «Excellence») для всех 3 вариантов звукоизоляции
- √ Температура горячей хозяйственной воды до 60°С, температура охлажденной воды до -8°C
- Управление работой в модульной конфигурации с установкой до 7 устройств каскадом
- ✓ Встроенный гидромодуль на горячей и холодной стороне

продуктов как: "Чиллеры и Тепловые насосы". Информация о

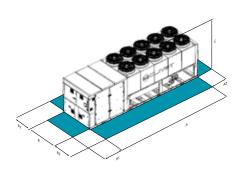
Компания Clivet является участником программ сертификации EUROVENT,таких ErP соответствующих продуктах представлена на сайте www.eurovent-certification.com

функции и характеристики

R-513A Полугерметичный

Двухвинтовой

клапан



ECOBREEZE расширительный

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶▶ WDAN-i	K4 MF	220.2	240.2	260.2	280.2	320.2	340.2	420.2
SC/LN/EN-EXC	А - Длина	mm	7756	7756	8725	9700	10680	10755	10755
SC/LN/EN-EXC	В - Ширина	mm	2228	2228	2228	2228	2228	2228	2228
SC/LN/EN-EXC	С - Высота	mm	2538	2538	2538	2538	2538	2538	2538
SC/LN/EN-EXC	A1	mm	1500	1500	1500	1500	1500	1500	1500
SC/LN/EN-EXC	A2	mm	700	700	700	700	700	700	700
SC/LN/EN-EXC	B1	mm	1200	1200	1200	1200	1200	1200	1200
SC/LN/EN-EXC	B2	mm	1200	1200	1200	1200	1200	1200	1200
SC/LN/EN-EXC	Рабочий вес	kg	7869	7869	9197	9708	10207	10516	11875

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence

LN-EXC Малошумная акустическая конфигурация (LN) - Excellence

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

R Полная рекуперация энергии (Стандартно)

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

SC Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

LN Малошумная акустическая конфигурация
EN Особо малошумная акустическая конфигурация

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

Т Конфигурация для 4-х трубной системы

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

CREFB Устройство для снижения потребляемой мощности вентиляторов ECOBREEZE (Стандартно)

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

технические характеристики

Размер		₩DAN	I-iK4 MF	220.2	240.2	260.2	280.2	320.2	340.2	420.2
ОХЛАЖД	ЦЕНИЕ 0% - НАГРЕВ 100%									
SC-EXC	Холодильная мощность (EN 14511:2022)	(1)	kW	522	544	574	633	721	792	989
SC-EXC	Полная потребляемая мощность (EN 14511:2022)(1)	kW	183	193	190	206	240	266	351
SC-EXC	EER (EN 14511:2022)	(1)	-	2,85	2,82	3,02	3,07	3,01	2,98	2,82
SC-EXC	SEER	(6)	-	5,10	5,08	5,08	5,17	5,12	5,05	5,05
SC-EXC	η _{s,c}	(6)	%	200,8	200,1	200,1	203,7	201,7	198,8	198,9
ОХЛАЖД	ЦЕНИЕ 100% - НАГРЕВ 0%									
SC-EXC	Тепловая мощность (EN 14511:2022) (2) kW 504 509 538							697	777	908
SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(2)	kW	163	165	168	205	229	252	300
SC-EXC	COP (EN 14511:2022)	(2)	-	3,09	3,09	3,20	3,09	3,05	3,08	3,03
ОХЛАЖД	ДЕНИЕ 100% - НАГРЕВ 100%									
SC-EXC	Холодильная мощность (EN 14511:2022)	(3)	kW	522	544	574	633	718	791	989
SC-EXC	Тепловая мощность (EN 14511:2022)	(3)	kW	668	695	728	805	917	1013	1266
SC-EXC	Полная потребляемая мощность (EN 14511:2022) (3)	kW	162	169	173	192	222	248	309
SC-EXC	TER (EN 14511:2022)	(4)	-	7,33	7,35	7,54	7,48	7,36	7,28	7,30
SC-EXC	Холодильные контуры		Nr				2			
SC-EXC	Кол-во компрессоров		Nr				2			
SC-EXC	Тип компрессоров						ISW			
SC-EXC	Хладагент		-				R-513A			
SC-EXC	Номинальное напряжение		V				400/3~/50			
SC-EXC	Уровень звуковой мощности	(5)	dB(A)	97	97	99	99	101	100	101
LN-EXC	Уровень звуковой мощности	(5)	dB(A)	90	91	91	92	92	92	94
EN-EXC	Уровень звуковой мощности	(5)	dB(A)	86	86	88	88	89	89	88
Директи	ва ErP (Energy Related Products)									
SC-EXC	SCOP - СРЕДНИЙ климат - W35	(6)	-	4,03	4,03	4,12	-	-	-	-
SC-EXC	$\eta_{s,H}$	(6)	%	158	158	162	-	-	-	-

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды во внутреннем теплообменнике (испарителе) = 12/7°С; Воздух, поступающий во внешний теплообменник 35°С

(5) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.

Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных контрольных условиях), Регламент Комиссии (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при определенных условиях) и Регламент Комиссии (EC) № 2016/2281, также известный как Ecodesign Lot21.

CMSC10 Модуль последовательной связи с системой диспетчеризации на

аксессуары

ancoc	o y a p b i
SPC1	Коррекция уставки сигналом 4-20 mA
SCP4	Коррекция уставки сигналом 0-10 V
SPC2	Корректировка установленного значения температуры воды на выходе по наружному датчику
IVFCDT	Инверторный привод изменяет расход в зависимости от температуры на стороне источника
IVFHDT	Переменный контроль расхода на стороне нагрева с помощью инвертора в зависимости от перепада температур
IVFCDTS	Инверторное регулирование расхода жидкости на стороне нагрева в зависимости от перепада температуры и по датчику давления
IVFHDTS	Инверторное регулирование расхода жидкости на стороне нагрева в зависимости от перепада температуры и по датчику давления
IVFCDTF	Регулировка расхода жидкости на стороне охлаждения с помощью инвертора в зависимости от перепада температуры с помощью расходомера
IVFHDTF	Регулирование расхода жидкости на стороне нагрева с помощью инвертора в зависимости от перепада температуры и по датчику давления
CONTA3	Счетчик электроэнергии M-bus
CONTA4	Счетчики электроэнергии и насосная группа M-bus
IFWX	Стальной сетчатый фильтр на стороне воды
CSVX	Два механических запорных клапана
AMMX	Резиновые антивибрационные опоры
AMMSX	Антисейсмические виброопоры
RCMRX	Выносной микропроцессорный пульт управления
PSX	Напряжение сети питания
CMSC9	Модуль для последовательного соединения с системой
	централизованного управления по протоколу Modbus

011110010	тодуль последовательной связи с системой диспет теризации на
	базе протокола LonWorks
CMSC11	Модуль последовательной связи с протоколом BACnet-IP
RPRI	Датчик утечки хладагента в корпусе
FMCHX	Расходомеры на охлаждающей и нагревающей сторонах
RE-25	Защита электрического щита от замерзания до минимальной
	наружной температуры -25°C
ECS	Функция ECOSHARE для автоматического управления группы машин
FC2	Электромагнитный фильтр для снижения кондуктивного излучения
	компрессора
PGFC	Защитная решетка теплообменника
PGCCH	Защитные решетки от града
RDVS	Переключающий клапан с двойными предохранительными клапанами
CCCA	Теплообменник конденсатора медь/алюминий с акриловым покрытием
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC
1+1PMHS\	Гидромодуль сторона нагрева 1+1 Инверторные насосы.
2PMHSV	Гидромодуль сторона охлаждения 2 Инверторных насоса.
1+1PMHS	Гидромодуль сторона нагрева 1+1 on/off насосы
2PMHS	Гидромодуль сторона нагрева 2 on/off насоса
1+1PMCS\	Гидромодуль сторона охлаждения 1+1 Инверторные насосы.
2PMCSV	Гидромодуль сторона нагрева 2 Инверторных насоса
1+1PMCS	Гидромодуль сторона охлаждения 1+1 on/off насосы.
2PMCS	Гидромодуль сторона охлаждения 2 on/off насоса
MISTER1	Счетчик энергии за счет перепада давления и датчиков перепада температур
MISTER2	Счетчик энергии по расходу жидкости и разности температур с
	единичными зондами (доступен только с опциями: FMCHX)
MISTER3	Счетчик электроэнергии через M-bus (доступно только с опциями: FMCHX)

⁽²⁾ Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура воды с горячей стороны = 40/45°C; Температура воздуха, поступающего во внешний теплообменник 7°C D.B./6°C W.B.

⁽³⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды на холодной стороне = $*/7^{\circ}$ C, температура воды на горячей стороне = $*/45^{\circ}$ C

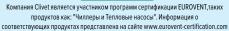
⁽⁴⁾ TER = (Тепловая мощность + Холодильная мощность) / (Общее потребление)

⁽⁶⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

SCREWLine⁴-i

Водяной чиллер

Воздушное охлаждение Наружная установка


Мощность от 204 до 1055 kW

- ✓ Винтовые компрессоры инверторного типа, микроканальные батареи и осевые вентиляторы
- ✓ Технические решения, минимизирующие воздействие на окружающую среду, с одним или двумя независимыми контурами, обеспечивающими повышенную надежность
- ✓ Хладагент R1234ze GWP = 7
- ✓ Повышенная энергоэффективность при полной нагрузке и сезонная энергоэффективность (вариант «Excellence»)
- ✓ Возможность работы при температуре окружающего воздуха до 50°С, температура охлажденной воды до -2°С
- Три варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до 7 устройств каскадом
- Встроенный гидромодуль и частичная рекуперация

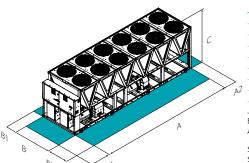
ErP

crew INVERTER

функции и характеристики

Наружная

R-1234ze R-1234ze



расширительный клапан

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

	PA3MEP	▶▶ WDA	Γ-iZ4	120.1	160.1	200.1	240.1	290.1	250.2	280.2	320.2	360.2	400.2	440.2	480.2	540.2	580.2
	ST/SC-EXC	А - Длина	mm	2925	2925	4175	4175	5425	5425	5425	5425	6675	6675	7925	7925	9175	10425
	ST/SC-EXC	В - Ширина	mm	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228
	ST/SC-EXC	С - Высота	mm	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535
	ST/SC-EXC	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
	ST/SC-EXC	A2	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
	ST/SC-EXC	B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
2	ST/SC-EXC	B2	mm	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700
	ST-EXC	Рабочий вес	kg	2623	2761	3924	3920	4284	4850	4861	4867	6254	6264	6686	7183	7595	9141
	SC/EN-EXC	Рабочий вес	kg	2794	2933	4179	4184	4539	5260	5271	5277	6714	6724	7146	7693	8105	9652

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации.

ST-EXC Стандартная акустическая конфигурация (ST)-Версия Excellence SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence EN-EXC Особо малошумная акустическая конфигурация (EN) - Excellence

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

ST Стандартная акустическая конфигурация (Стандартно) SC Акустическая конфигурация со звукоизоляцией компрессора

ΕN Особо малошумная акустическая конфигурация

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов ECOBREEZE (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

- Рекуперация тепла: не требуется (Стандартно)
- Частичная рекуперация энергии

технические характеристики

Размер		▶ ► W	DAT-iZ4	120.1	160.1	200.1	240.1	290.1	250.2	280.2	320.2	360.2	400.2	440.2	480.2	540.2	580.2
ST/SC-EXC	 Холодильная мощность (EN 14511:2022) 	(1)	kW	204	256	360	420	510	423	483	539	630	710	789	880	965	1055
ST/SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	64,4	85,2	115	142	167	134	156	180	212	241	263	301	322	348
ST/SC-EXC	EER (EN 14511:2022)	(1)	-	3,16	3,00	3,12	2,96	3,06	3,16	3,10	3,00	2,97	2,95	3,00	2,92	3,00	3,04
ST/SC-EXC	SEER	(4)	-	5,15	5,13	5,17	5,14	5,20	5,42	5,38	5,36	5,42	5,37	5,39	5,37	5,33	5,35
ST/SC-EXC	η _{s,c}	(4)	%	202,9	202,3	203,6	202,8	205,1	214,0	212,1	211,4	214,0	211,6	212,5	211,9	210,3	210,9
ST/SC-EXC	Холодильные контуры		Nr			1							2				
ST/SC-EXC	Кол-во компрессоров		Nr			1							2				
ST/SC-EXC	Тип компрессоров	(2)	_							IS	W						
ST/SC-EXC	Хладагент		-							R-12	34ze						
ST/SC-EXC	Номинальное напряжение		V							400/3	3~/50						
ST-EXC	Уровень звуковой мощности	(3)	dB(A)	97	97	97	97	99	99	100	101	101	102	103	103	103	104
SC-EXC	Уровень звуковой мощности	(3)	dB(A)	93	94	94	94	96	96	97	98	98	99	100	100	100	101
EN-EXC	Уровень звуковой мощности	(3)	dB(A)	89	90	90	90	92	92	93	94	94	96	96	96	96	96

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C

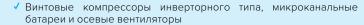
(4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

аксессуары

1PM 1PMV 1PMH	Гидромодуль с 1 насосом Гидромодуль со стороны потребителя с 1-м инверторным насосом Гидромодуль с 1-м высоконапорным насосом	CMSC9	Модуль для последовательного соединения с системой централизованного управления по протоколу Modbus Модуль последовательной связи с системой диспетчеризации на
1PMVH	Гидромодуль со стороны потребителя с 1-м высоконапорным	CINISCIO	базе протокола LonWorks
	инверторным насосам	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
2PM	Гидрогруппа с двумя насосами	RPRI	Датчик утечки хладагента в корпусе
2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным	SCP4	Коррекция уставки сигналом 0-10 В
	приводом	SPC2	Корректировка установленного значения температуры воды на
2PMH	Гидромодуль со стороны потребителя с 2-мя высоконапорными		выходе по наружному датчику
	насосами	PPBM	Защитные панели микроканальных теплообменников
2PMVH	Гидромодуль со стороны потребителя с 2-мя высоконапорными	CCME	Микроканальный теплообменник с эпоксидным покрытием
	инверторными насосами	MHP	Манометры высокого и низкого давления
IVFDT	Инверторный привод изменяет расход в зависимости от температуры на стороне источника	RE-25	Защита электрического щита от замерзания до минимальной наружной температуры -25°C
IFWX	Стальной сетчатый фильтр на стороне воды	ECS	Функция ECOSHARE для автоматического управления группы машин
CSVX	Два механических запорных клапана	FC2	Электромагнитный фильтр для снижения кондуктивного излучения
AMMX	Резиновые антивибрационные опоры		компрессора
AMMSX	Антисейсмические виброопоры	PGCC	Защитная решетка теплообменника и компрессора
CONTA2	Счетчик энергии	RDVS	Переключающий клапан с двойными предохранительными
RCMRX	Выносной микропроцессорный пульт управления		клапанами
PSX	Напряжение сети питания	REGBT	Устройство для частичного разделения конденсационных батарей

⁽²⁾ ISW = Винговой компрессор со встроенным инвертором (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.


SCREWLine⁴-i

Водяной чиллер

Воздушное охлаждение Наружная установка

Мощность от 281 до 1422 kW



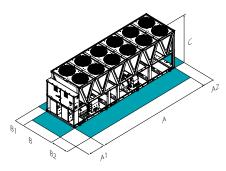
- ✓ Технические решения, снижающие воздействие на окружающую среду, с одним или двумя независимыми контурами, обеспечивающими повышенную надежность
- ✓ Хладагент R513A GWP = 631
- ✓ Повышенная энергоэффективность при полной нагрузке и сезонная энергоэффективность (вариант «Excellence»), высокая сезонная энергоэффективность в сочетании с компактными габаритами (вариант «Premium»)
- Возможность работы при температуре окружающего воздуха до 50°С, температура охлажденной воды до -8°С
- ✓ Три варианта звукоизоляции
- Управление работой в модульной конфигурации с установкой до 7 устройств каскадом
- Встроенный гидромодуль и частичная рекуперация

оответствующих продуктах представлена на сайте www.eurovent-certification.com

ErP

функции и характеристики

Полугерметичный Двухвинтовой


расширительный клапан

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶► WD/	<u> 4T-iK4</u>	120.1	160.1	200.1	240.1	250.2	280.2	320.2	340.2	360.2	400.2	440.2	480.2	540.2	580.2
ST-EXC	А - Длина	mm	4175	4175	5425	6675	7925	7925	7925	9175	10425	10425	10425	12923	12923	12923
ST-EXC	В - Ширина	mm	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228
ST-EXC	С - Высота	mm	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535
ST-EXC	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
ST-EXC	A2	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
ST-EXC	B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
ST-EXC	B2	mm	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700
ST-EXC	Рабочий вес	kg	3024	3167	4253	4683	5627	6071	6075	6880	7934	7950	7956	9285	9289	9295
SC/EN-EXC	Рабочий вес	kg	3229	3372	4508	4938	6037	6481	6485	7340	8394	8410	8416	9795	9799	9805
SC/EN-EXC	Раоочии вес	кд	3229	3372	4508	4938	6037	6481	6485	/340	8394	8410	8416	9/95	9/99	9805

PA3MEP	▶► WDA	T-iK4	120.1	160.1	200.1	240.1	250.2	280.2	320.2	340.2	360.2	400.2	440.2	480.2	540.2	580.2
ST-PRM	А - Длина	mm	2925	2925	4175	5425	5424	5424	5424	6675	7924	7924	7924	10425	10425	10425
ST-PRM	В - Ширина	mm	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228	2228
ST-PRM	С - Высота	mm	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535	2535
ST-PRM	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
ST-PRM	A2	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
ST-PRM	B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
ST-PRM	B2	mm	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700	2700
ST-PRM	Рабочий вес	kg	2673	2793	3860	4255	4862	4867	5305	6249	6696	6696	7468	8571	8581	8592
SC/EN-PRM	Рабочий вес	kg	2858	2998	4115	4510	5272	5277	5715	6709	7156	7156	7928	9081	9091	9102

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ST-EXC Стандартная акустическая конфигурация (ST)-Версия Excellence

SC-EXC C шумоизолированными компрессорами (SC)-Версия Excellence EN-EXC Особо малошумная акустическая конфигурация (EN) - Excellence

SC-PRM C шумоизолированными компрессорами (ST)-Премиум

SC-PRM C шумоизолированными компрессорами (SC)-Премиум EN-PRM Особо малошумная акустическая конфигурация (EN) - Премиум

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

PRM Premium

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

ST Стандартная акустическая конфигурация (Стандартно) SC Акустическая конфигурация со звукоизоляцией компрессора

EN Особо малошумная акустическая конфигурация

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов ECOBREEZE (Стандартно)

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

Частичная рекуперация энергии

технические характеристики

	· ·	_/															
Размер		▶ ► W	/DAT-iK4	120.1	160.1	200.1	240.1	250.2	280.2	320.2	340.2	360.2	400.2	440.2	480.2	540.2	580.2
ST/SC-EXC	 Холодильная мощность (EN 14511:2022) 	(1)	kW	294	374	505	602	593	679	741	811	900	991	1089	1204	1325	1422
ST/SC-EXC	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	93,9	120	163	194	181	210	238	253	284	318	364	387	441	485
ST/SC-EXC	EER (EN 14511:2022)	(1)	-	3,13	3,11	3,10	3,11	3,27	3,19	3,12	3,21	3,17	3,11	2,99	3,11	3,01	2,93
ST/SC-EXC	SEER	(4)	-	5,13	5,12	5,11	5,12	5,36	5,38	5,37	5,39	5,34	5,31	5,35	5,34	5,30	5,31
ST/SC-EXC	η _{s,c}	(4)	%	202,3	202,0	201,3	201,7	211,3	212,2	211,9	212,6	210,5	209,6	211,0	210,6	209,0	209,5
ST/SC-EXC	Холодильные контуры		Nr			1						:	2				
ST/SC-EXC	Кол-во компрессоров		Nr			1							2				
ST/SC-EXC	Тип компрессоров	(2)	-							IS	W						
ST/SC-EXC	Хладагент		_							R-5	13A						
ST/SC-EXC	Номинальное напряжение		V							400/	3~/50						
ST-EXC	Уровень звуковой мощности	(3)	dB(A)	97	97	97	98	101	101	101	102	102	102	103	103	104	104
SC-EXC	Уровень звуковой мощности	(3)	dB(A)	93	94	94	95	97	98	98	98	100	100	100	101	101	101
EN-EXC	Уровень звуковой мощности	(3)	dB(A)	89	90	90	91	93	94	94	94	96	96	96	97	97	97
Размер		▶▶ W	/DAT-iK4	120.1	160.1	200.1	240.1	250.2	280.2	320.2	340.2	360.2	400.2	440.2	480.2	540.2	580.2
ST/SC-PRM	 Холодильная мощность (EN 14511:2022) 	(1)	kW	281	341	473	576	550	614	681	753	836	910	1006	1120	1240	1338
ST/SC-PRM	Полная потребляемая мощность (EN 14511:2022)	(1)	kW	97,1	131	173	201	194	225	261	271	297	328	378	400	447	496
ST/SC-PRM	EER (EN 14511:2022)	(1)		2,89	2,61	2,73	2,87	2,83	2,73	2,61	2,78	2,81	2,78	2,66	2,80	2,78	2,70
ST/SC-PRM	SEER	(4)		4,96	4,84	4,80	4,89	4,95	4,92	4,87	4,99	4,88	4,91	4,90	4,97	4,97	4,97
ST/SC-PRM	η _{s,c}	(4)	%	195,4	190,7	189,1	192,5	194,9	193,8	191,7	196,4	192,1	193,5	192,8	195,8	195,8	195,8
ST/SC-PRM	Холодильные контуры		Nr			1						:	2				
ST/SC-PRM	Кол-во компрессоров		Nr			1						:	2				
ST/SC-PRM	Тип компрессоров	(2)	-							IS	W						
ST/SC-PRM	Хладагент		-							R-5	13A						
ST/SC-PRM	Номинальное напряжение		V							400/	3~/50						
ST-PRM	Уровень звуковой мощности	(3)	dB(A)	97	97	97	98	100	101	101	102	102	102	103	103	104	104
SC-PRM	Уровень звуковой мощности	(3)	dB(A)	93	94	94	95	97	97	98	98	98	99	100	100	100	101
																	97

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = 12/7°C; Входящая наружная температура воздуха = 35°C (2) ISW = Винтовой компрессор со встроенным инвертором

централизованного управления по протоколу Modbus Принадлежности, код которых заканчивается на "Х", поставляются отдельно (4) SEER и SCOP в соответствии с EN 14825: 2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

аксессуары

1PM	Гидромодуль с 1 насосом	CMSC10	Модуль последовательной связи с системой диспетчеризации на
1PMV	Гидромодуль со стороны потребителя с 1-м инверторным насосом		базе протокола LonWorks
1PMH	Гидромодуль с 1-м высоконапорным насосом	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
1PMVH	Гидромодуль со стороны потребителя с 1-м высоконапорным	RPRI	Датчик утечки хладагента в корпусе
	инверторным насосам	SCP4	Коррекция уставки сигналом 0-10 В
2PM	Гидрогруппа с двумя насосами	SPC2	Корректировка установленного значения температуры воды на
2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным приводом		выходе по наружному датчику
2PMH	Гидромодуль со стороны потребителя с 2-мя высоконапорными насосами	PPBM	Защитные панели микроканальных теплообменников
2PMVH	Гидромодуль со стороны потребителя с 2-мя высоконапорными	CCME	Микроканальный теплообменник с эпоксидным покрытием
	инверторными насосами	MHP	Манометры высокого и низкого давления
IVFDT	Инверторный привод изменяет расход в зависимости от температуры	RE-25	Защита электрического щита от замерзания до минимальной
	на стороне источника		наружной температуры -25°C
IFWX	Стальной сетчатый фильтр на стороне воды	ECS	Функция ECOSHARE для автоматического управления группы машин
CSVX	Два механических запорных клапана	FC2	Электромагнитный фильтр для снижения кондуктивного излучения
AMMX	Резиновые антивибрационные опоры		компрессора
AMMSX	Антисейсмические виброопоры	PGCC	Защитная решетка теплообменника и компрессора
CONTA2	Счетчик энергии	RDVS	Переключающий клапан с двойными предохранительными
RCMRX	Выносной микропроцессорный пульт управления		клапанами
PSX	Напряжение сети питания	REGBT	Устройство для частичного разделения конденсационных батарей
CMSC9	Модуль для последовательного соединения с системой		

⁽³⁾ Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

Продается только в промышленной среде

SCREWLine³ FC

Водяной чиллер со свободным охлаждением

Воздушное охлаждение Наружная установка

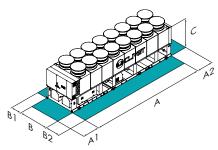
Мощность от 520 до 1523 kW

- ✓ Винтовые компрессоры и два независимых контура, обеспечивающих повышенную надежность
- Техническое решение для применения в условиях холодного климата или в составе технологических установок
- ✓ Хладагент R134a GWP = 1430
- ✓ Возможность работы при температуре окружающего воздуха до -39°C, температура охлажденной воды до -8°C
- ✓ Прямое и непрямое естественное охлаждение (без гликоля)
- Два варианта звукоизоляции
- ✓ Управление работой в модульной конфигурации с установкой до 7 устройств каскадом
- Встроенный гидромодуль и частичная рекуперация

функции и характеристики

Наружная

клапан



HydroPack

Intelliplant

Размеры и зоны обслуживания

PA3MEP	▶► WDAT-SL	3 FC	200.2	210.2	220.2	240.2	260.2	280.2	320.2	340.2	360.2	400.2	440.2	500.2	540.2	580.2
SC-FCD-EXC	А - Длина	mm	5316	5316	6468	6468	6468	7265	7265	8241	8241	9217	9217	11166	11166	11166
SC-FCD-EXC	В - Ширина	mm	2246	2246	2246	2246	2246	2246	2246	2246	2246	2246	2246	2246	2246	2246
SC-FCD-EXC	С - Высота	mm	2668	2668	2668	2668	2668	2668	2668	2668	2668	2668	2668	2668	2668	2668
SC-FCD-EXC	A1	mm	1535	1535	1535	1535	1535	1535	1535	1535	1535	1535	1535	1535	1535	1535
SC-FCD-EXC	A2	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
SC-FCD-EXC	B1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
SC-FCD-EXC	B2	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
SC-FCD-EXC	Рабочий вес	kg	6102	6134	7214	7255	7344	8112	8163	9213	9710	11012	11074	12035	12169	12245

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

SC-FCD-EXC C шумоизолированными компрессорами (SC)-Безгликолевый FREE-COOLING Excellence

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

SC Акустическая конфигурация со звукоизоляцией компрессора

(Стандартно)

EN Особо малошумная акустическая конфигурация (разм. 200.2÷500.2) ЕСТЕСТВЕННОЕ ОХЛАЖДЕНИЕ:

СВОБОДНОЕ-ОХЛАЖДЕНИЕ прямое (Стандартно)

Безгликолевый FREE-COOLING **FCI**

СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ВЕНТИЛЯТОРОВ НАРУЖНОЙ СЕКЦИИ:

Устройство для снижения потребляемой мощности вентиляторов наружной секции с регулированием скорости (фазовый регулятор)

(Стандартно в акустических конфигурации sc)

CREFB Устройство для снижения потребляемой мощности вентиляторов

ECOBREEZE (Стандартно в акустических конфигурации en)

ТИП ВНЕШНЕЙ СЕКЦИИ ВЕНТИЛЯТОРОВ:

AXIX Высокоэффективный диффузор для осевого вентилятора - АхіТор

(Стандартно

NAXI Высокоэффективный диффузор для осевого вентилятора - АхіТор: не

требуется

технические характеристики

Размер		▶► WDAT	r-SL3 FC	200.2	210.2	220.2	240.2	260.2	280.2	320.2	340.2	360.2	400.2	440.2	500.2	540.2	580.2
Режим Fr	ee-Cooling ВЫКЛ																
SC-EXC	Холодильная мощность	(1)	kW	520	557	579	624	685	746	825	900	961	1049	1164	1311	1409	1523
SC-EXC	Полная потребляемая мощность блока	(1)	kW	144	155	163	175	194	211	236	248	270	297	338	369	406	441
SC-EXC	EER при полной нагрузке	(1)	-	3,61	3,59	3,55	3,56	3,53	3,53	3,5	3,62	3,56	3,53	3,44	3,55	3,47	3,45
SC-EXC	SEPR - FCD	(5)	-	6,09	6,16	6,16	6,24	6,20	6,10	6,11	6,00	6,00	6,07	6,12	6,16	6,12	6,26
SC-EXC	SEPR - FCI	(5)	-	5,76	5,84	5,90	5,86	6,02	5,84	6,00	5,93	5,81	6,05	5,90	5,87	5,83	5,96
СВОБОД	НОЕ ОХЛАЖДЕНИЕ ДИРЕТТО НА																
SC-EXC	Холодильная мощность	(2)	kW	403	411	519	527	536	649	663	684	695	814	835	1066	1080	1093
SC-EXC	Полная потребляемая мощность блока	(2)	kW	13	13	16	16	16	19	20	22	23	25	26	31	32	32
SC-EXC	EER при полной нагрузке	(2)	-	31,1	31,4	32,6	32,8	33	33,8	33,8	30,5	30,5	32	32,2	34	34,1	33,8
SC-EXC	Холодильные контуры		Nr								2						
SC-EXC	Кол-во компрессоров		Nr								2						
SC-EXC	Тип компрессоров	(3)	-							D:	SW						
SC-EXC	Хладагент		-							R-1	34a						
SC-EXC	Номинальное напряжение		V							400/	3~/50						
SC-EXC	Уровень звуковой мощности	(4)	dB(A)	98	98	98	98	98	98	98	100	100	102	104	105	106	106
EN-EXC	Уровень звуковой мощности	(4)	dB(A)	94	94	94	94	94	94	94	95	96	98	100	100	-	-

⁽¹⁾ Данные относятся к следующим условиям: температура воды во внутреннем теплообменнике = 15/10 °C; гликоль 30%; температура воздуха во внешнем теплообменнике 30°C

наружной температуры -39°C

аксессуары

2PM	Гидрогруппа с двумя насосами	SPC2	Корректировка установленного значения температуры воды на
3PM	Гидрогруппа с 3-мя насосами		выходе по наружному датчику
CSVX	Два механических запорных клапана	SPC1	Корректировка установленного значения температуры воды на
CCCA	Теплообменник конденсатора медь/алюминий с акриловым		выходе по сигналу 4-20 mA
	покрытием	ECS	Функция ECOSHARE для автоматического управления группы машин
CCCA1	Конденсатор с алюминиевым покрытием Energy Guard DCC	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
AMMX	Резиновые антивибрационные опоры	SFSTR2	Устройство для плавного пуска компрессора
PGCC	Защитная решетка теплообменника и компрессора	CBS	Автоматические выключатели защиты от перегрузки
PGCCH	Защитные решетки от града	WOGLY	единицы, поставляется без раствор гликоля (только FCI)
CONTA2	Счетчик энергии	RE-20	Защита электрического щита от замерзания до минимальной
RCMRX	Выносной микропроцессорный пульт управления		наружной температуры -20°C
PSX	Напряжение сети питания	RE-25	Защита электрического щита от замерзания до минимальной
CMSC9	Модуль для последовательного соединения с системой		наружной температуры -25°C
	централизованного управления по протоколу Modbus	RE-30	Защита электрического щита от замерзания до минимальной
CMSC10	Модуль последовательной связи с системой диспетчеризации на		наружной температуры -30°C
	базе протокола LonWorks	RE-35	Защита электрического щита от замерзания до минимальной
CMSC11	Модуль последовательной связи с протоколом BACnet-IP		наружной температуры -35°C
SCP4	Коррекция уставки сигналом 0-10 В	RE-39	Защита электрического щита от замерзания до минимальной
			2000

⁽²⁾ Данные только по естественному охлаждению (компрессоры выключены) относятся к следующим условиям: температура воды во внутреннем теплообменнике = 15/10°C; температура воздуха во внешнем теплообменнике = 2°C C.T./1°C B.T.; гликоль 30% (3) DSW = двухвинтовой компрессор

⁽⁴⁾ Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013 (5) SEER и SCOP в соответствии с EN 14825:2018

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

ELFOEnergy Duct Medium

Реверсивный тепловой насос

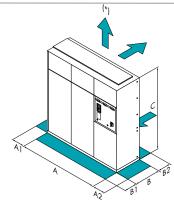
Воздушное охлаждение Внутренняя установка

Мощность от 33,9 до 98,9 kW

- ✓ Спиральные компрессоры с вентиляторами типа «Plug-Fan», обеспечивающими повышенные значения располагаемого напора
- ✓ Схема с возможностью канализации для кондиционирования внутри зданий небольших и средних размеров
- ✓ Хладагент R410A GWP = 2088
- ✓ Повышенная энергоэффективность при компактных габаритных размерах
- √ Гибкость в эксплуатации благодаря возможности выбора различных схем подачи и забора воздуха
- ✓ Возможность работы при температуре окружающего воздуха до -10°C, температура горячей воды до 55°C
- Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- Встроенный гидромодуль и частичная рекуперация

функции и характеристики

охлаждение



Электронный Электронное расширительный клапан вентилятором

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶ WSN-XEE	122	162	182	222	262	302	352	402
А - Длина	mm	1450	1450	1874	1874	2650	2650	2650	2650
В - Ширина	mm	780	780	780	780	780	780	780	780
С - Высота	mm	1996	1996	1996	1996	1996	1996	1996	1996
A1	mm	100	100	100	100	100	100	100	100
A2	mm	500	500	500	500	500	500	500	500
B1	mm	1000	1000	1000	1000	1000	1000	1000	1000
B2	mm	1300	1300	1300	1300	1300	1300	1300	1300
Эксплуатационная ма	acca kg	501	555	620	626	732	770	874	904

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

Вертикальная раздача воздуха (Стандартно)

EO Горизонтальная раздача воздуха

технические характеристики

Размер	WSN	-XEE	122	162	182	222	262	302	352	402
 Холодильная мощность (EN 14511:2022) 	(1)	kW	33,9	41,0	47,6	54,5	64,5	75,0	86,3	98,9
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	15,9	17,7	20,5	24,9	27,5	31,5	37,4	41,6
EER (EN 14511:2022)	(1)	-	2,13	2,32	2,32	2,19	2,35	2,38	2,31	2,38
SEER	(4)	-	2,63	3,10	3,17	3,08	3,36	3,31	3,32	3,40
η _{s,c}	(4)	%	102,3	121,1	124,0	120,0	131,5	129,5	129,9	133,0
 Тепловая мощность (EN 14511:2022) 	(2)	kW	41,0	48,3	59,0	68,0	80,0	92,4	103	112
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	13,3	15,5	18,7	21,4	25,1	28,7	32,6	36,8
COP (EN 14511:2022)	(2)	-	3,09	3,12	3,16	3,17	3,19	3,22	3,17	3,05
Холодильные контуры		Nr					1			
Кол-во компрессоров		Nr				:	2			
Тип компрессоров		-				SCF	OLL			
Хладагент		-				R-4	10A			
Номинальный расход воздуха		l/s	4444	4444	5000	5000	6667	7500	7500	7500
Максимальный свободный напор		Pa	510	510	390	390	570	390	390	390
Расход жидкости (сторона потребителя)		l/s	1,62	1,96	2,28	2,61	3,08	3,57	4,12	4,72
Номинальное напряжение		V				400/	3~/50			
Уровень звука в канале	(3)	dB(A)	84	84	87	87	84	87	87	87
Директива ErP (Energy Related Prod	ucts)									
ErP Энергетический класс – СРЕДНИЙ климат - W35		-	A+	A+	A+	A++	A+	A+	-	-
SCOP - СРЕДНИЙ климат - W35	(4)	-	3,25	3,31	3,51	3,94	3,75	3,36	3,50	3,80
η _{s,н}	(4)	%	127	129	137	155	147	131	137	149

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Температура воды внутреннего теплообменника = $12/7^{\circ}$ C; Входящая наружная

(4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N $^{\circ}$ 811/2013 (номинальная тепловая мощность \leq 70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) N $^{\circ}$ 813/2013 (номинальная тепловая мощность \leq 400 кВт при указанных

аксессуары

4DUD.	0	E4110E	D
1PUB	Один низконапорный насос	FANQE	Вентиляция электрического отсека
1PUA	Один высоконапорный насос	MHP	Манометры высокого и низкого давления
1PUHE	Высокоэффективный насос с инвертором для первичного контура.	SDV	Запорные клапаны на нагнетании и всасывании компрессора
IFWX	Стальной сетчатый фильтр на стороне воды	SCP4	Коррекция уставки сигналом 0-10 В
ABU	Встроенное подключение к водяной системе	SPC2	Корректировка установленного значения температуры воды на
CCCA	Теплообменник конденсатора медь/алюминий с акриловым		выходе по наружному датчику
	покрытием	CSVX	Два механических запорных клапана
AMRX	Резиновые антивибрационные опоры	MF2	Многофункциональный фазовый монитор
PGFC	Защитная решетка теплообменника	CONTA2	Счетчик энергии
CMSC9	Модуль для последовательного соединения с системой	ECS	Функция ECOSHARE для автоматического управления группы машин
	централизованного управления по протоколу Modbus	RCMRX	Выносной микропроцессорный пульт управления
CMSC10	Модуль последовательной связи с системой диспетчеризации на	PSX	Напряжение сети питания
	базе протокола LonWorks	STSOL	Дополнительные подъемные скобы
CMSC11	Модуль последовательной связи с протоколом BACnet-IP	OHE	Комплект расширения предела нагрева до -10°С (м.т.)
PFCC SFSTR	Конденсаторы для увеличения коэффициента мощности (cosfi>0,95) Устройство для снижения пускового тока (разм. 70.4÷160.4)	VACSUX	Переключающий клапан ГВС на стороне потребителя

температура воздуха = 35°C (2) Данные, рассчитанные в соответствии со стандартом EN 14511:2022 относятся к следующим условиям: Вода во внутреннем теплообменнике = 40/45°C; Температура воздуха во внешнем теплообменнике 7 С.Т. /6 (°C) М.Т.

⁽³⁾ Звуковая мощность, измеренная в соответствии со стандартами UNI EN ISO 9614 и Eurovent 8/1 для воздуховодного блока с доступным давлением, равным 120 Па

ELFOEnergy Ground

Реверсивный тепловой насос

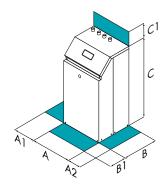
Безконденсаторный Внутренняя установка

Мощность от 6,23 до 33,1 kW

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- ✓ Один спиральный компрессор и пластинчатые теплообменники
- ✓ Оптимальное решение для установки при ремонте или при строительстве объектов недвижимости для первоначального капиталовложения
- ✓ Хладагент R410A GWP = 2088
- ✓ Оптимальное решение для установки при ремонте или при строительстве объектов недвижимости для первоначального капиталовложения
- √ Температура горячей воды до 60°C, температура охлажденной воды до -8°C
- √ Энергосбережение с компенсацией уставки в соответствии с уровнем энтальпии внешней среды или температуры воздуха
- √ Группы жидкостной теплопередачи со стороны источника и пользователя и трехходовой клапан встроены в систему

функции и характеристики


Безконденсаторный Внутренняя установка

R-410A

Спиральный

Управление Control4 NRG

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶▶ WSHN-EE	17	21	31	41	51	61	71	81	91	101	121
А - Длина	mm	402	402	402	402	402	573	573	573	573	573	573
В - Ширина	mm	602	602	602	602	602	604	604	604	604	604	604
С - Высота п		785	785	785	785	785	858	858	858	858	858	858
A1	mm	150	150	150	150	150	150	150	150	150	150	150
A2	mm	150	150	150	150	150	150	150	150	150	150	150
B1	mm	600	600	600	600	600	600	600	600	600	600	600
C1 m		300	300	300	300	300	300	300	300	300	300	300
Эксплуатаци	л квинс	01	00	00	-00	00	445	120	147	100	101	170
масса		81	83	86	90	98	115	129	147	163	164	170

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

BS Низкая температура воды на стороне источника

НАПРЯЖЕНИЕ:

400TN Напряжение400/3N~/50 + нейтраль 230M Напряжение230/1~/50 (разм. 17÷51)

ГИДРАВЛИЧЕСКАЯ ГРУППА НА СТОРОНЕ ИСТОЧНИКА:

Гидравлическая группа на стороне источника: не требуется (Стандартно)

HYGS Гидравлическая группа на стороне источника (разм. 17÷91)

технические характеристики

	NSHI	N-EE	17	21	31	41	51	61	71	81	91	101	121
Блок для работы с теплыми полами													
W10/W35													
 Тепловая мощность (EN 14511:2022) 		kW	6,95	7,49	9,50	12,0	16,0	19,5	24,7	26,7	30,8	36,2	41,2
Полная потребляемая мощность (EN 14511:2022)		kW	1,35	1,47	1,83	2,34	3,10	3,83	4,81	5,21	6,04	7,09	8,01
COP (EN 14511:2022)		-	5,15	5,10	5,19	5,11	5,16	5,10	5,13	5,12	5,10	5,11	5,14
W35/W18													
 Холодильная мощность (EN 14511:2022) 		kW	8,37	9,05	10,8	14,0	17,8	22,1	27,1	29,8	33,8	38,1	42,8
Полная потребляемая мощность (EN 14511:2022)		kW	1,51	1,70	2,01	2,49	3,32	4,30	5,28	5,65	6,46	7,46	8,39
EER (EN 14511:2022)		-	5,52	5,32	5,37	5,64	5,35	5,14	5,13	5,27	5,22	5,11	5,10
Фанкоилы													
W10/W45													
 Тепловая мощность (EN 14511:2022) 		kW	6,68	7,27	8,83	11,5	15,6	18,9	23,6	25,1	29,3	34,2	38,7
Полная потребляемая мощность (EN			4.50	4.70	2.42	2.04	2.00	4.00		6.62	7.46	0.05	0.70
14511:2022)		kW	1,59	1,73	2,43	3,01	3,96	4,82	5,94	6,62	7,46	8,85	9,76
COP (EN 14511:2022)		-	4,19	4,19	3,63	3,81	3,94	3,92	3,97	3,79	3,93	3,87	3,97
W35/W7			·	•			•				•		
 Холодильная мощность (EN 14511:2022) 		kW	6,23	6,57	8,05	10,8	13,2	16,3	20,7	22,3	25,8	29,5	33,1
Полная потребляемая мощность (EN 14511:2022)		kW	1,54	1,67	2,04	2,47	3,37	4,21	5,09	5,23	6,25	7,39	8,15
EER (EN 14511:2022)		-	4,04	3,93	3,95	4,39	3,93	3,87	4,07	4,27	4,13	4,00	4,06
SEER	(2)	_	2,35	2,41	2,69	3,01	3,16	3,17	3,55	3,70	3,69	3,66	3,50
η _{s.c}	(2)	%	85,9	88,3	99,6	112,4	118,3	118,9	134,0	140,1	139,8	138,5	132,0
Радиаторы	. ,												
W10/W55													
 ◆ Тепловая мощность (EN 14511:2022) 		kW	6,36	7,07	8,57	10,9	14,8	17,4	22,3	23,6	27,9	31,9	36,7
Полная потребляемая мощность (EN 14511:2022)		kW	2,06	2,15	3,23	3,82	5,03	6,11	7,47	8,35	9,05	11,0	11,8
COP (EN 14511:2022)		_	3,09	3,29	2,66	2,85	2,94	2,85	2,99	2,83	3,08	2,91	3,11
Холодильные контуры		Nr			·	•	•	1			•		
Кол-во компрессоров		Nr						1					
Тип компрессоров								SCROLL					
Хладагент								R-410A					
Расход жидкости (сторона потребителя)	(1)	I/s	0,29	0,31	0,38	0,51	0,63	0,77	0,96	1,06	1,22	1,39	1,56
Располагаемый напор насоса	(1)	kPa	58	58	56	47	39	62	54	50	44	155	132
Поток воды (сторона источника)	(1)	I/s	0,35	0,38	0,46	0,61	0,78	0,95	1.18	1.28	1.50	1.71	1,91
Номинальное напряжение		V	.,	230/1~/50			., .	,	400/3	N~/50	,	,	,
Уровень звуковой мощности	(3)	dB(A)	57	57	57	58	58	60	63	64	65	66	67
Директива ErP (Energy Related Produc													
ErP Энергетический класс — СРЕДНИЙ климат - W35		-	A+++	A+++	A+++	Д+++	Д+++	Д+++	A+++	Д+++	A+++	Д+++	A+++
ErP Энергетический класс — СРЕДНИЙ климат - W55			A+++	A+++	A++	A++	A+++	A+++	A+++	A++	A+++	Δ++	A+++
SCOP - СРЕДНИЙ климат - W35	(2)		5,66	5,77	6,01	6,04	5,93	5,92	5,86	5,80	5,45	6,28	6,09
Л _{S,н}	(2)	%	223	228	237	239	234	234	231	229	215	248	241
SCOP - СРЕДНИЙ климат - W55	(2)	-	4,14	4,15	3,79	3,93	4,04	3,94	4,05	3,88	4,12	3,92	4,06
	(2)	%	158	158	144	149	154	150	154	147	157	149	154

(1) Данные приведены для следующих условий: Температура воды во внутреннем

теплообменнике (испарителе) = 12/7°C Температура воды во внешнем теплообменнике = 30/35°C. Характеристики в соответствии

с EN 14511:2022 W10/W35 вода на стороне потребителя 30/35°C; вода на стороне источника10°C W10/W45 вода на стороне потребителя 40/45°С; вода на стороне источника10°С W10/W55 вода на стороне потребителя 40/45°С; вода на стороне источника10°С W10/W55 вода на стороне потребителя 45/55°С; вода на стороне источника10°С W35/W18 вода на стороне потребителя 23/18°C; вода на стороне источника30/35°C W35/W7 вода на стороне потребителя 12/7°С; вода на стороне источника30/35°С (2) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

(3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях).

аксессуары

3WV Трехходовой клапан **IVMSX** Модулирующий клапан

IVWX Клапан с плавным регулированием на стороне источника

AMRX Резиновые антивибрационные опоры

CMMBX модуль последовательной связи с диспетчерской системой (Modbus)

PBLC1X Клапан с электроприводом на стороне воды

РМХ Резиновые антивибрационные опоры SCP3X Модуль последовательной связи с диспетчерской системой (Modbus)

SPCX Корректировка установленного значения температуры воды на

выходе по наружному датчику

SFSTR4N Сервисная клавиатура (кабель от 1.5 метров)

KDT3VX Корректировка установленного значения температуры воды на kDT3V Корректировка установленного значения температуры воды на

3DHWX Трехходовой клапан

SFSTR1 Клапан с электроприводом на стороне воды KTFL1X Комплект гибких шлангов 1" (разм. 17÷71)

KTFL2X Комплект гибких шлангов 1 1/4"

CACSX Комплект управления подачей горячей питевой воды

ACS300X 300 литровый бак для горячей бытовой воды (разм. 17÷41) ACS500X Бак для горячей бытовой воды 500 литров (разм. 17÷81)

ACS5SX Бак для горячей бытовой воды 500 литров с солнечной панелью

(разм. 17÷81) ACS3SX Бак для горячей бытовой воды 300 литров с солнечной панелью

(разм. 17÷41) KVMSP1X Комплект управления излучающими панелями с 1" соединениями (разм. 17÷51)

KVMSP2X Комплект для управления излучающими панелями с соединениями 1 1/4"

KSAX Гидросепаратор на 100 л

KVICX Комплект управления бойлером (разм. 17÷81) KITERAX Электронный настенный комнатный термостат

ELFOEnergy Ground Medium²

Водяной чиллер

WSH-XEE2: только охлаждение WSHN-XEE2: реверсивный тепловой насос Безконденсаторный Внутренняя установка

Мощность от 34,5 до 356 kW

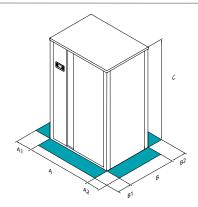
Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- ✓ Спиральные компрессоры и пластинчатые теплообменники
- √ Техническое решение для многоквартирных жилых зданий и торговых сооружений
- ✓ Хладагент R410A GWP = 2088
- ✓ 3 режима работы чиллера: «Только холодная вода», «Только горячая вода» и «Реверсивный водяной контур"
- ✓ Температура горячей хозяйственной воды до 60°С, температура охлажденной воды до -8°C
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Встроенный гидромодуль на стороне источника и потребителя и час-тичная рекуперация

функции и характеристики

(WSH-XEE2) (WSHN-XEE2)

установка



Электронный Спиральный расширительный клапан

Intelliplant

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶▶ WSH-XEE2	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
А - Длина	mm	837	837	837	837	1110	1110	1110	1110	1110	1110	1110	1110	1110	1110
В - Ширина	mm	607	607	607	607	885	885	885	885	885	885	1035	1035	1038	1038
С - Высота	mm	1483	1483	1483	1483	1910	1910	1910	1910	1910	1910	1910	1910	1910	1910
A1	mm	100	100	100	100	150	150	150	150	150	150	150	150	150	150
A2	mm	100	100	100	100	150	150	150	150	150	150	150	150	150	150
B1	mm	500	500	500	500	500	500	500	500	500	500	500	500	500	500
B2	mm	300	300	300	300	350	350	350	350	350	350	350	350	350	350
Рабочий вес	kg	212	276	295	308	421	510	557	572	700	733	771	809	1085	1205

PA3MEP	▶▶ WSHN-XEE2	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
А - Длина	mm	837	837	837	837	1110	1110	1110	1110	1110	1110	1110	1110	1110	1110
В - Ширина	mm	607	607	607	607	885	885	885	885	885	885	1035	1035	1038	1038
С - Высота	mm	1483	1483	1483	1483	1910	1910	1910	1910	1910	1910	1910	1910	1910	1910
A1	mm	100	100	100	100	150	150	150	150	150	150	150	150	150	150
A2	mm	100	100	100	100	150	150	150	150	150	150	150	150	150	150
B1	mm	500	500	500	500	500	500	500	500	500	500	500	500	500	500
B2	mm	300	300	300	300	350	350	350	350	350	350	350	350	350	350
Рабочий вес	kg	223	290	309	322	441	519	580	581	728	743	808	820	1119	1265

ВЕРСИЯ:

GW
 Версия для применения с грунтовыми водами (Стандартно)
 GEO
 Версия для применения с геотермальными системами

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

Частичная рекуперация энергии

РЕЖИМ РАБОТЫ (ТОЛЬКО WSH-XEE2):

осо Работа только в режиме охлаждения (Стандартно)

ОНО Работа с реверсированием водяного контура

OHI Nur Heißbetrieb

технические характеристики

Размер ▶▶ W			12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	
 Холодильная мощность (EN 14511:2022) 	(1)	kW	35,6	49,8	59,3	68,4	84,2	109	124	147	173	197	222	250	305	356
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	7,50	10,6	12,5	15,7	17,5	23,7	26,8	31,8	38,1	43,2	48,6	55,3	68,4	82,3
EER (EN 14511:2022)	(1)		4,75	4,68	4,74	4,36	4,82	4,59	4,61	4,62	4,54	4,56	4,57	4,52	4,46	4,32
SEER	(4)		5,36	5,25	5,30	5,25	5,59	5,77	5,87	5,72	5,38	5,38	5,51	5,30	5,46	5,39
η _{s,c}	(4)	%	206,4	202,0	204,0	202,0	215,6	222,8	226,8	220,8	207,2	207,2	212,4	204,0	210,4	207,6
 ◆ Тепловая мощность (EN 14511:2022) 	(2)	kW	41,3	57,6	68,4	80,7	96,5	125	143	169	200	228	256	289	354	419
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	9,54	13,3	15,7	19,3	21,8	29,0	32,8	39,0	46,5	52,4	59,2	67,1	83,1	101
COP (EN 14511:2022)	(2)		4,33	4,35	4,35	4,19	4,44	4,31	4,34	4,32	4,29	4,36	4,33	4,30	4,26	4,17
Холодильные контуры		Nr								1						
Кол-во компрессоров		Nr							:	2						
Тип компрессоров									SCR	OLL						
Хладагент		-							R-4	10A						
Номинальное напряжение		V							400/3	3~/50						
Уровень звуковой мощности		dB(A)	60	64	65	64	64	74	74	74	77	77	79	80	81	82
Размер	HN-	XEE2	12.2	16.2	19.2	22.2	27.2	35.2	40.2	45.2	55.2	60.2	70.2	80.2	100.2	120.2
 Холодильная мощность (EN 14511:2022) 	(1)	kW	34,5	48,6	58,0	68,1	82,3	102	120	139	168	187	218	241	293	348
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	7,42	10,5	12,4	15,4	17,5	23,8	26,9	32,0	38,1	43,0	48,7	55,1	67,8	81,7
EER (EN 14511:2022)	(1)	-	4.65	4.61	4.67	4.41	4.69	4.29	4.45	4.34	4.42	4.34	4.47	4.37	4.32	4.26
SEER	(4)	-	5,38	4,78	5,01	4,97	5,30	5,18	5,36	5,37	5,16	5,05	5,25	4,97	5,08	4,95
η _{s.c}	(4)	%	207,1	183,0	192,6	191,0	204,2	199,3	206,5	206,9	198,3	194,0	201,9	190,9	195,1	190,1
 Тепловая мощность (EN 14511:2022) 	(2)	kW	40,3	56,6	66,8	79,2	93,6	119	139	162	195	217	251	278	342	407
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	9,47	13,2	15,8	19,1	21,3	28,4	32,3	38,4	45,8	52,0	58,1	65,6	82,6	100
COP (EN 14511:2022)	(2)		4.25	4.28	4.24	4.15	4.40	4.18	4.29	4.22	4.25	4.18	4.32	4.25	4.15	4.06
Холодильные контуры		Nr		-,	.,	.,	.,	.,	.,	1	-,	.,	-,	.,	.,	.,
Кол-во компрессоров		Nr								2						
Тип компрессоров		_							SCR	OLL						
Хладагент		-							R-4	10A						
Номинальное напряжение		V							400/3	3^/50						
Уровень звуковой мощности	(3)	dB(A)	60	64	65	64	64	74	74	74	77	77	79	80	81	82
Директива ErP (Energy Related Produ	cts)															
ErP Энергетический класс — СРЕДНИЙ климат - W35		-	A+++	A+++	-						-					
ErP Энергетический класс — СРЕДНИЙ климат - W55		-	A+++	A+++	A+++						-					
SCOP - СРЕДНИЙ климат - W35	(4)	-	5,69	5,45	5,47	4,85	5,97	5,67	5,84	5,68	5,68	5,55	5,63	5,45	5,76	5,61
Лз.н	(4)	%	225	215	216	191	231	219	226	219	219	214	217	210	222	216
SCOP - СРЕДНИЙ климат - W55	(4)		4,51	4,35	4,36	4,40	4,83	4,60	4,69	4,67	4,64	4,61	4,69	4,65	4,67	4,52
η _{s,H}	(4)	%	172	166	166	168	185	176	180	179	178	176	180	178	179	173

(1) Данные, рассчитанные в соответствии с EN 14511:2022 относится к следующим условиям: теплообменнике (испарителе) = 12/7°С. теплообменнике (внешний обменник) = 30/35°С (2) Данные, рассчитанные в соответствии с EN 14511:2022 относится к следующим условиям: Вода внутр. теплообменника = 40/45°С; Температура воды внешнего теплообменника = 10/7°С. (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

(4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N $^\circ$ 811/2013 (номинальная тепловая мощность \leq 70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) N $^\circ$ 813/2013 (номинальная тепловая мощность \leq 400 кВт при указанных исходных условиях) и правила делегированные комиссией (EC) N $^\circ$ 2016/2281, также известное как Ecodesign Lot21.

аксессуары

SDV	Запорные клапаны на нагнетании и всасывании компрессора (разм.
	12.2÷80.2)

МОВМАС Увеличенный корпус

MF2 Многофункциональный фазовый монитор

RCTX Удаленное управление

CMSC10 Модуль последовательной связи с системой диспетчеризации на

базе протокола LonWorks

CMSC8 Модуль последовательной связи с протоколом BACnet
 CMSC9 Модуль для последовательного соединения с системой централизованного управления по протоколу Modbus

CMMBX модуль последовательной связи с диспетчерской системой (Modbus)

CMSLWX Модуль последовательной связи LON WORKS

BACX Модуль последовательной связи с протоколом BACnet

SPCX Корректировка установленного значения температуры воды на

выходе по наружному датчику

IFWX Стальной сетчатый фильтр на стороне воды

SFSTR Устройство для снижения пускового тока (разм. 70.4÷160.4)

РFCP Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)

AVIBX Антивибрационные опоры

только WSH-XEE2: VS2MC Сторона

VS2MC Сторона охлаждения с двухходовым клапаном (разм. 12.2÷80.2)

VS2MCX Сторона охлаждения с двухходовым клапаном VS3MC Сторона охлаждения с двухходовым клапаном

VS3MC Сторона охлаждения с двухходовым клапаном

VS3MCX Сторона охлаждения с трехходовым клапаном (поставляется отдельно)
VARYC VARYFLOW 2 инверторных насоса на стороне охлаждения

VARYC VARYFLOW 2 инверторных насоса на стороне охлаждения VS2MH Сторона охлаждения с трехходовым клапаном (разм. 12.2÷80.2)

VS2MHV Пруууолорый илапан на стороно нагрора

VS2MHX Двухходовый клапан на стороне нагрева

VS3MH Сторона охлаждения с трехходовым клапаном

VS3MHX Трехходовый клапан на стороне нагрева (поставляется отдельно)

VARYH VARYFLOW + (сторона нагрева 2 насоса с инвертором)

VACSHX Подключение ГВС на стороне нагрева

только WSHN-XEE2:

VACSUX Переключающий клапан ГВС на стороне потребителя VARYU VARYFLOW + (2 инверторных насоса со стороны пользователя)

VS2M 2-х ходовый клапан со стороны источника (разм. 12.2÷80.2)

VS2MX 2-х ходовый клапан со стороны источника
VS3M 2-х холовый клапан со стороны источника (разм.

VS3M 2-х ходовый клапан со стороны источника (разм. 12.2÷80.2)
VS3MX 4-х ходовый клапан со стороны источника (поставляется отдельно)
VARYS VARYFLOW + (2 инверторных насоса со стороны источника)

ELFOEnergy Ground Medium² HW

Реверсивный тепловой насос

Безконденсаторный Внутренняя установка

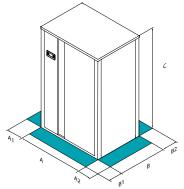
Мощность от 73,3 до 278 kW

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- ✓ Спиральные компрессоры и пластинчатые теплообменники
- ✓ Высокотемпературная установка централизованного ДЛЯ обслуживания жилых зданий
- ✓ Хладагент R134a GWP = 1430
- Функционирование только в режиме нагрева
- ✓ Температура воды до 78°C
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Группы жидкостной теплопередачи со стороны источника и пользователя встроены в систему

функции и характеристики

отопление



Спиральный расширительный клапан

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶▶ WSHH-LEE1	19.2	22.2	27.2	35.2	40.2	45.2	60.2	80.2
А - Длина	mm	854	854	854	854	854	1110	1110	1110
В - Ширина	mm	652	652	672	672	672	930	930	930
С - Высота	mm	1483	1483	1483	1483	1483	1910	1910	1910
A1	mm	300	300	300	300	300	500	500	500
A2	mm	300	300	300	300	300	500	500	500
B1	mm	500	500	500	500	500	500	500	500
B2	mm	300	300	300	300	300	350	350	350
Рабочий вес	kg	295	315	421	510	557	572	733	809

РЕЖИМ РАБОТЫ:

ОНО Работа с реверсированием водяного контура

технические характеристики

Размер	₩SHH	-LEE1	19.2	22.2	27.2	35.2	40.2	45.2	60.2	80.2
 Тепловая мощность (EN 14511:2022)) (1)	kW	73,4	83,0	96,8	122	144	184	224	278
Полная потребляемая мощность (E 14511:2022)	N (1)	kW	16,9	18,1	20,8	28,0	34,3	44,6	54,7	66,8
COP (EN 14511:2022)	(1)	-	4,33	4,60	4,64	4,37	4,21	4,13	4,10	4,16
Холодильные контуры		Nr					1			
Кол-во компрессоров		Nr					2			
Тип компрессоров		-				SCF	ROLL			
Хладагент		-				R-1	34a			
Расход жидкости (сторона потребителя	я)	l/s	2,24	2,53	2,95	3,72	4,40	5,62	6,84	8,49
Поток воды (сторона источника)		l/s	2,75	3,16	3,69	4,57	5,34	6,78	8,25	10,3
Номинальное напряжение		-				400/	3~/50			
Уровень звуковой мощности	(2)	dB(A)	70	70	71	74	76	78	78	80
Директива ErP (Energy Related I	Products)									
ErP Энергетический класс — СРЕДНИЙ климат - W55	(3)	-	A+++	A+++	A+++	A+++	-	-	-	-
SCOP - СРЕДНИЙ климат - W55	(3)	-	4,48	4,65	4,65	4,61	4,57	4,45	4,45	4,52
ης,н	(3)	%	171,0	178,0	178,0	176,0	175,0	170,0	170,0	173,0

Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура горячей воды со стороны источника = 45/40°C, температура воды со стороны рабочего контура = 70/78°C

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях).

аксессуары

DV	Запорные клапаны на нагнетании и всасывании компрессора	SPCX	Корректировка установленного значения температуры воды на
1F2	Многофункциональный фазовый монитор		выходе по наружному датчику
CTX	Удаленное управление	IFWX	Стальной сетчатый фильтр на стороне воды
MSC10	Модуль последовательной связи с системой диспетчеризации на	SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)
	базе протокола LonWorks	PFCC	Конденсаторы для увеличения коэффициента мощности (cosfi>0,95)
MSC8	Модуль последовательной связи с протоколом BACnet	AVIBX	Антивибрационные опоры
MSC9	Модуль для последовательного соединения с системой	MOBMAG	Увеличенный корпус
	централизованного управления по протоколу Modbus	VARYS	VARYFLOW 2 инверторных насоса на стороне охлаждения
		VARYU	VARYFLOW + (сторона нагрева 2 насоса с инвертором)
ACX	Модуль последовательной связи с протоколом BACnet		
	MSC8 MSC9 MMBX MSLWX	IF2 Многофункциональный фазовый монитор CTX Удаленное управление MSC10 Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks MSC8 Модуль последовательной связи с протоколом BACnet MSC9 Модуль для последовательного соединения с системой централизованного управления по протоколу Modbus MMBX МОДУЛЬ ПОСЛЕДОВАТЕЛЬНОЙ СВЯЗИ С ДИСПЕТЧЕРСКОЙ СИСТЕМОЙ (Modbus) MSLWX МОДУЛЬ ПОСЛЕДОВАТЕЛЬНОЙ СВЯЗИ LON WORKS	IF2 Многофункциональный фазовый монитор CTX Удаленное управление MSC10 Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks MSC8 Модуль последовательной связи с протоколом BACnet MSC9 Модуль для последовательного соединения с системой дентрализованного управления по протоколу Modbus MMBX модуль последовательной связи с диспетчерской системой (Modbus) MSLWX Модуль последовательной связи с диспетчерской системой (Modbus) MSLWX Модуль последовательной связи LON WORKS

⁽²⁾ Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013

⁽³⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

ELFOEnergy Ground Medium² MF

Многоцелевой обратимый тепловой насос

Водяное охлаждение Внутренняя установка

Мощность от 34,3 до 241 kW

✓ Спиральные компрессоры и пластинчатые теплообменники

Компания Clivet является участником программ сертификации EUROVENT, таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

✓ Хладагент R410A - GWP = 2088

универсальность

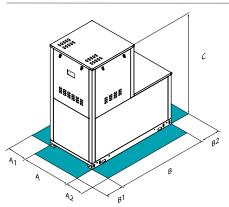
✓ Повышенная энергоэффективность благодаря полной рекуперации тепла

✓ Технология поливалентных технологий, настраиваемая для 4-трубных или 2-трубных систем, обеспечивает максимальную

- ✓ Температура горячей хозяйственной воды до 60°С, температура охлажденной воды до 4°C
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- √ Встроенный гидромодуль на стороне источника, потребителя и реку-перации

функции и характеристики

R-410A


Vary Flow

клапан

Intelliplant

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP WSHN-XE	E2 MF	12.2	16.2	19.2	22.2	27.2
А - Длина	mm	900	900	900	900	900
В - Ширина	mm	1700	1700	1700	1700	1700
С - Высота	mm	1870	1870	1870	1870	1870
A1	mm	100	100	100	100	100
A2	mm	100	100	100	100	100
B1	mm	700	700	700	700	700
B2	mm	700	700	700	700	700
Эксплуатационная масса	kg	403	471	491	497	550

PA3MEP ►► WSHN-XE	E2 MF	35.2	40.2	45.2	50.2	60.2	70.2	80.2
А - Длина	mm	1100	1100	1100	1100	1100	1100	1100
В - Ширина	mm	1700	1700	1700	1700	1700	1700	1700
С - Высота	mm	1870	1870	1870	1870	1870	1870	1870
A1	mm	100	100	100	100	100	100	100
A2	mm	100	100	100	100	100	100	100
B1	mm	700	700	700	700	700	700	700
B2	mm	700	700	700	700	700	700	700
Эксплуатационная масса	kg	656	721	754	901	941	1045	1056

ВЕРСИЯ:

R

GW Версия для применения с грунтовыми водами (Стандартно) **GEO**

Версия для применения с геотермальными системами

РЕКУПЕРАЦИЯ ТЕПЛА:

Полная рекуперация энергии (Стандартно)

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

Конфигурация для 4-х трубной системы (Стандартно)

2T Конфигурация для 2-х трубной системы

технические характеристики

Pa₃mep ►► WSHN-	XEE	2 MF	12.2		16.2	19.2	22.2	<u> </u>	27.2
ОХЛАЖДЕНИЕ 0% - НАГРЕВ 100%	(4)	kW	24.2		40.0	F7.2			01.0
Холодильная мощность (EN 14511:2022)	(1)	kW	34,3 7.69		48,0 10.9	57,2 12,7	66,2 15,8		81,0 17.8
Полная потребляемая мощность (EN 14511:2022)	(1)		,		- , -				
EER при полной нагрузке (EN14511:2022)	(1)		4,46		4,42	4,51	4,20		4,56
SEER	(6)		5,30		4,85	4,84	4,85		5,05
]s.c ОХЛАЖДЕНИЕ 100% - НАГРЕВ 0%	(6)	%	204,0		186,2	185,7	186,0	_	194,1
Гепловая мощность (EN 14511:2022)	(2)	kW	40,4		56,8	67,2	79,8		94,0
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	9,42		13,2	15,6	19,0		21,1
СОР при полной нагрузке (EN14511:2022)	(2)	-	4,29		4,32	4,31	4,20		4,46
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 100%			,		,-	,	,		, -
(олодильная мощность (EN 14511:2022)	(3)	kW	31,2		43,7	52,0	60,9		73,6
епловая мощность (EN 14511:2022)	(3)	kW	40.5		56,6	67,1	79.4		94.7
Іолная потребляемая мощность (EN 14511:2022)	(3)	kW	9,37		12,9	15,1	18,4		21,1
ER (EN 14511:2022)	(4)		7,65		7,77	7,87	7.61		7.96
олодильные контуры	.,	Nr	-,			1	.,01		,
ол-во компрессоров		Nr				2			
ип компрессоров						SCROLL			
ладагент						R-410A			
оминальное напряжение						400/3~/50			
ровень звуковой мощности	(5)	dB(A)	60		64	65	64		64
Іиректива ErP (Energy Related Produ		u.b.() 1)			•		<u> </u>		
rP Энергетический класс — СРЕДНИЙ климат - W35	-10,	_	Д+++		Δ+++	_	<u>-</u>		_
rP Энергетический класс — СРЕДНИЙ климат - W55			A+++		A+++	A+++			
СОР - СРЕДНИЙ климат - W35	(6)		5,69		5,45	5,47	4.85		5.97
s,н	(6)	%	225,0		215.0	216.0	191.0		231,0
ISH SCOP - СРЕДНИЙ климат - W55	(6)		4,56		4,42	4,42	4,46		4,89
Is,н	(6)	%	174,0		169,0	169,0	170,0		188,0
Размер ▶► WSHN -	VEE	2 ME	35.2	40.2	45.2	50.2	60.2	70.2	80.2
ОХЛАЖДЕНИЕ 0% - НАГРЕВ 100%	ALL	<u> </u>	35.2	40.2	45.2	50.2	00.2	70.2	80.2
Колодильная мощность (EN 14511:2022)	(1)	kW	105	119	142	154	190	214	241
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	23,8	26,9	31.9	34,5	43,2	48,9	55.4
ЕК при полной нагрузке (EN14511:2022)	(1)		4,42	4,43	4,45	4,47	4,40	4,38	4,35
EER	(6)	-	5,17	5,31	5,29	5,06	4,92	5,00	4,82
ls,c	(6)	%	203,7	209,2	208,4	199,5	193,7	197,2	189,7
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 0%	1-/		,		,-	,-	;	,_	.50,
епловая мощность (EN 14511:2022)	(2)	kW	120	139	163	179	219	253	280
Іолная потребляемая мощность (EN 14511:2022)	(2)	kW	28,2	32,0	38,1	40,8	51,5	57,6	65,0
СОР при полной нагрузке (EN14511:2022)	(2)	-	4,25	4,34	4,28	4,39	4,25	4,39	4,31
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 100%	\-/		.,	.,	.,=0	.,00	.,	.,00	1,51
Колодильная мощность (EN 14511:2022)	(3)	kW	95,0	108	128	139	174	194	219
епловая мощность (EN 14511:2022)	(3)	kW	123	140	165	180	225	252	284
Іолная потребляемая мощность (EN				-					
4511:2022)	(3)	kW	28,2	32,1	37,9	40,8	50,8	57,5	65,2
ER (EN 14511:2022)	(4)		7.73	7,73	7.74	7,82	7.85	7.76	7,71
олодильные контуры	(7)	Nr	,,,,	,,,,	,,,,,,	1	7,00	,,,,	1,71
олодильные контуры ол-во компрессоров	_	Nr -				2			
ип компрессоров	_					SCROLL			
ин компрессоров (ладагент						R-410A			
Номинальное напряжение						400/3~/50			
•	(5)	dB(A)	74	74	74	77	77	79	80
			14	/4	/4	11	11	19	60
		uz(,,							
Уровень звуковой мощности <mark>Директива ErP (Energy Related Produ</mark> SCOP - СРЕДНИЙ климат - W35		-	5,67	5,84	5,68	5,78	5,55	5,63	5,45

⁽¹⁾ Данные, рассчитанные в соответствии со стандартом EN 14511: 2022, относятся к следующим условиям: Температура воды на холодной стороне = 12/7°C, температура воды на стороне источника = 30/35°C

SCOP - СРЕДНИЙ климат - W55

 $\eta_{S,H}$

(6)

(6)

(6)

219,0

4,60

176,0

226,0

4,69

180,0

219,0

4,67

223,0

4,71

180,0

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях).

214,0

4,61

176,0

217,0

4,69

180,0

210,0

4,65

178,0

⁽²⁾ Данные, рассчитанные в соответствии со стандартом EN 14511: 2022, относятся к следующим условиям: Температура воды на горячей стороне = 40/45°C, температура воды на стороне источника = 10/7°C

⁽³⁾ Данные, рассчитанные в соответствии со стандартом EN 14511: 2022, относятся к следующим условиям: Температура воды на холодной стороне = $*/7^{\circ}$ С, температура воды на горячей стороне = */45°C

⁽⁴⁾ TER = (Мошность охлаждения + Тепловая мошность) / (Общая потребляемая мошность)

⁽⁵⁾ Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.

⁽⁶⁾ Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

аксессуары

VARYU	VARYFLOW + (2 инверторных насоса со стороны пользователя)	CMSC9	Модуль для последовательного соединения с системой
VS2M	2-х ходовый клапан со стороны источника		централизованного управления по протоколу Modbus
VS2MX	2-х ходовый клапан со стороны источника	SPCX	Корректировка установленного значения температуры воды на
VS3M	4-х ходовый клапан со стороны источника (поставляется отдельно)		выходе по наружному датчику
VS3MX	4-х ходовый клапан со стороны источника (поставляется отдельно)	IFWX	Стальной сетчатый фильтр на стороне воды
VARYS	VARYFLOW + (2 инверторных насоса со стороны источника)	SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)
VARYR	VARYFLOW + (сторона рекуператора 2 насоса с инвертором)	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
VACSRX	Переключатель ГВС на стороне полной рекуперации	AVIBX	Антивибрационные опоры
SDV	Запорные клапаны на нагнетании и всасывании компрессора	RCTX	Удаленное управление
CMSC10	Модуль последовательной связи с системой диспетчеризации на	BACX	Модуль последовательной связи по протоколу BACnet
	базе протокола LonWorks	CMMBX	модуль последовательной связи с диспетчерской системой (Modbus)
CMSC8	Модуль последовательной связи с протоколом BACnet	CMSLWX	Модуль последовательной связи LON WORKS

A

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

SPINchiller³

Водяной чиллер

WSH-XSC3: только охлаждение WSHN-XSC3: реверсивный тепловой насос Безконденсаторный Внутренняя установка

Мощность от 211 до 394 kW

- ✓ Спиральные компрессоры, пластинчатые и два независимых холодильных контура, обеспечивающих повышенную надежность
- √ Техническое решение для многоквартирных жилых зданий и торговых сооружений
- ✓ Хладагент R410A GWP = 2088
- ✓ Гибкость в эксплуатации благодаря возможности использования схем «вода - вода» или «вода с гликолем - вода»
- ✓ 3 режима работы чиллера: «Только холодная вода», «Только горячая вода» и «Реверсивный водяной контур"
- ✓ Температура горячей хозяйственной воды до 60°С, температура охлажденной воды до -8°C
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Встроенный гидромодуль на стороне источника и потребителя и час-тичная рекуперация

функции и характеристики

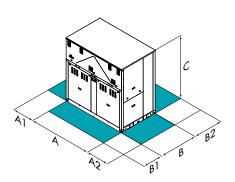
Тепловой

Тепловой

(WSH-XSC3) (WSHN-XSC3)

Безконденсаторный Внутренняя

Герметичный



Электронный HydroPack расширительный клапан

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP ►► V	VSH-XSC3	70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4
А - Длина	mm	2234	2234	2234	2234	2234	2234	2234	2234
В - Ширина	mm	1132	1132	1132	1132	1132	1132	1132	1460
С - Высота	mm	2210	2210	2210	2210	2210	2210	2210	2210
A1	mm	500	500	500	500	500	500	500	500
A2	mm	500	500	500	500	500	500	500	500
B1	mm	800	800	800	800	800	800	800	800
B2	mm	1000	1000	1000	1000	1000	1000	1000	1000
EN Эксплуатационная м	acca kg	1246	1268	1336	1356	1419	1692	1751	1935

PA3MEP WSF	IN-XSC3	70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4
А - Длина	mm	2234	2234	2234	2234	2234	2234	2234	2234
В - Ширина	mm	1134	1134	1134	1134	1134	1134	1134	1460
С - Высота	mm	2210	2210	2210	2210	2210	2210	2210	2210
A1	mm	500	500	500	500	500	500	500	500
A2	mm	500	500	500	500	500	500	500	500
B1	mm	800	800	800	800	800	800	800	800
B2	mm	1000	1000	1000	1000	1000	1000	1000	1000
EN Эксплуатационная мас	ca ka	1242	1264	1322	1343	1406	1583	1651	1924

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

EN Особомалошумное (EN)

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Cocóo малошумная акустическая конфигурация (Стандартно)
 Bepcия для применения с геотермальными системами

РЕКУПЕРАЦИЯ ТЕПЛА:

- Рекуперация тепла: не требуется (Стандартно)

Частичная рекуперация энергии

НИЗКАЯ ТЕМПЕРАТУРА (ТОЛЬКО WSH-XSC3):

- Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

РЕЖИМ РАБОТЫ (ТОЛЬКО WSH-XSC3):

ОСО Работа только в режиме охлаждения (Стандартно)
 ОНО Работа с реверсированием водяного контура

OHI Nur Heißbetrieb

технические характеристики

Размер ►► W	SH-	(SC3	70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4					
 Холодильная мощность (EN 14511:2022) 	(1)	kW	217	231	248	268	292	319	350	394					
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	46,4	50,4	53,3	58,4	61,9	68,2	75,5	83,6					
EER (EN 14511:2022)	(1)	-	4,68	4,59	4,65	4,58	4,71	4,68	4,64	4,72					
SEER	(4)	-	6,16	6,24	6,18	6,06	6,01	5,73	5,65	5,91					
η _{s,c}	(4)	%	238,6	241,7	239,1	234,3	232,4	221,3	217,9	228,2					
 ◆ Тепловая мощность (EN 14511:2022) 	(2)	kW	249	266	285	309	333	366	401	453					
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	56,8	61,5	64,2	71,5	76,3	83,5	92,6	103					
COP (EN 14511:2022)	(2)	-	4,39	4,32	4,44	4,32	4,36	4,38	4,33	4,41					
Холодильные контуры		Nr					2								
Кол-во компрессоров		Nr					4								
Тип компрессоров		-		SCROLL											
Хладагент		-	R-410A												
Расход жидкости (сторона потребителя)		l/s	10,3	11,0	11,8	12,7	13,9	15,2	16,6	18,8					
Поток воды (сторона источника)		l/s	12,7	13,5	14,4	15,6	16,9	18,6	20,4	22,9					
Номинальное напряжение		V	400/3~/50												
EN Уровень звуковой мощности	(3)	dB(A)	81	82	83	83	83	84	85	86					
Размер	HN-		70.4	75.4	80.4	85.4	90.4	100.4	110.4	120.4					
 Холодильная мощность (EN 14511:2022) 	(1)	kW	211	225	242	262	283	313	342	390					
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	48,5	52,6	55,5	61,1	65,5	71,6	79,1	88,0					
EER (EN 14511:2022)	_(1)		4,35	4,28	4,36	4,29	4,33	4,37	4,32	4,44					
SEER	(4)		5,95	5,89	5,84	5,90	5,92	5,65	5,40	5,92					
η _{s,c}	(4)	%	229,9	227,8	225,7	228,0	228,8	217,9	207,9	228,6					
◆ Тепловая мощность (EN 14511:2022)	(2)	kW	243	259	278	301	327	358	393	445					
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	58,4	63,2	66,8	73,4	78,9	86,5	94,8	106					
COP (EN 14511:2022)	(2)	-	4,17	4,10	4,17	4,10	4,14	4,14	4,14	4,20					
Холодильные контуры		Nr					2								
Кол-во компрессоров		Nr					4								
Тип компрессоров		-				SCF	OLL								
Хладагент		-				R-4	10A								
Расход жидкости (сторона потребителя)		I/s	10,0	10,7	11,5	12,5	13,5	14,9	16,3	18,6					
Поток воды (сторона источника)		I/s	12,4	13,3	14,3	15,5	16,7	18,4	20,2	22,9					
Номинальное напряжение		V				400/	3~/50								
EN Уровень звуковой мощности	(3)	dB(A)	81	82	83	83	83	84	85	86					
Директива ErP (Energy Related Produ		. ,													
SCOP - СРЕДНИЙ климат - W35	(4)	-	6,09	6,09	6,13	6,05	5,89	6,22	6,07	-					
Л s,н	(4)	%	241	241	242	239	233	246	240	-					
SCOP - СРЕДНИЙ климат - W55	(4)	-	4,72	4,67	4,72	4,67	4,41	4,77	4,70	-					
	(4)	%	181	179	181	179	168	183	180						

⁽¹⁾ Данные посчитаны в соответствии со стандартом EN 14511:2022 и относятся к следующим условиям: вода внутреннего теплообменника = 12/7°C. Вода внешнего теплообменника = 30/35°C

(4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных исходных условиях), правила делегированные комиссией (EC) № 813/2013 (номинальная тепловая мощность ≤400 кВт при указанных исходных условиях) и правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

⁽²⁾ Данные посчитаны в соответствии со стандартом EN 14511:2022 и относятся к следующим условиям: температура воды внутреннего теплообменника = $40/45^{\circ}$ C. вода внутреннего теплообменника = $10/7^{\circ}$ C

⁽³⁾ Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

аксессуары

AP	Водные подсоединения сзади
SDV	Запорные клапаны на нагнетании и всасывании компрессора
MHP	Манометры высокого и низкого давления
MF2	Многофункциональный фазовый монитор
SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)
RCMRX	Выносной микропроцессорный пульт управления
ACIE	Нагреватель защиты от льда внутреннего теплообменника
EHCS	Нагреватели антифриза со стороны источника
CMSC10	Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks
CMSC9	Модуль для последовательного соединения с системой
	централизованного управления по протоколу Modbus
CMSC11	Модуль последовательной связи с протоколом BACnet-IP
SCP4	Коррекция уставки сигналом 0-10 В
SPC2	Корректировка установленного значения температуры воды на
	выходе по наружному датчику
CSVX	Два механических запорных клапана
IFWX	Стальной сетчатый фильтр на стороне воды
PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
AVIBX	Антивибрационные опоры
CONTA2	Счетчик энергии
RPRPDI	Датчик утечки хладагента в корпусе
ECS	Функция ECOSHARE для автоматического управления группы машин
PSX	Напряжение сети питания
IVFDT	Инверторный привод изменяет расход в зависимости от температуры
	на стороне источника

	на стороне источника
только WS	SH-XSC3:
HYGC1	On-off насос на стороне охлаждения
HYGC2	Гидравлическая группа на стороне охлаждения с 2-мя насосами вкл-
VS2MC	Сторона охлаждения с двухходовым клапаном
VS2MCX	Сторона охлаждения с двухходовым клапаном
VS3MCX	Сторона охлаждения с трехходовым клапаном (поставляется отдельно)
VARYC	VARYFLOW 2 инверторных насоса на стороне охлаждения
2PMC	Гидромодуль на стороне охлаждения с 2 насосами
V2MCP	Модулирующий 2-х ходовой клапан для высоких потерь давления на

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

холодной стороне

V2MCPX	Модулирующий 2-х ходовой клапан для высоких потерь давления на холодной стороне
HYGH1	Сторона нагрева с on-off насосом
HYGH2	Гидравлическая группа на стороне нагрева с 2-мя насосами вкл- выкл
VARYH	VARYFLOW + (сторона нагрева 2 насоса с инвертором)
VS2MH	Двухходовый клапан на стороне нагрева
VS2MHX	Двухходовый клапан на стороне нагрева
VS3MHX	Трехходовый клапан на стороне нагрева (поставляется отдельно)
2PMH	Гидромодуль на горячей стороне с 2 насосами
V2MHP	Модулирующий 2-х ходовой клапан для высоких потерь давления на горячей стороне
V2MHPX	Модулирующий 2-х ходовой клапан для высоких потерь давления на

только WSHN-XSC3:

горячей стороне

HYGU1	Гидромодуль с 1 ON/OFF насосом на стороне потребителя
HYGU2	Гидромодуль с 2 ON/OFF насосами на стороне
VARYU	VARYFLOW + (2 инверторных насоса со стороны пользователя)
HYP2U	Гидрогруппа с двумя насосами
HYGS1	Гидромодуль c 1 ON/OFF насосом на стороне источника
HYGS2	Гидромодуль с 2 ON/OFF насосами на стороне источника
VARYS	VARYFLOW + (2 инверторных насоса со стороны источника)
VS2M	2-х ходовый клапан со стороны источника
VS2MX	2-х ходовый клапан со стороны источника
VS3MX	4-х ходовый клапан со стороны источника (поставляется отдельно)

 HYP2S
 Гидромодуль на стороне конденсатора с 2 насосами

 V2MSP
 Модулирующий 2-х ходовой клапан для высоких потерь давления на стороне источника

V2MSPX Модулирующий 2-х ходовой клапан для высоких потерь давления на стороне источника

NEW PRODUCT

WIDHN-KSL1 PL

SCREWLine⁴-i PL

Многоцелевой обратимый тепловой насос

Безконденсаторный Внутренняя установка

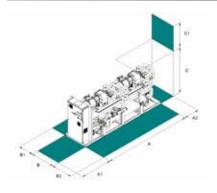
Мощность от 440 до 945 kW

- ✓ Винтовые компрессоры с инверторной технологией и трубчатым
- ✓ Технология с применением поливалентных хладонов, позволяет применять их в 4-трубных системах
- ✓ Два независимых контура, обеспечивающих повышенную надежность
- ✓ Хладагент R513A GWP = 631
- ✓ Высокая полная загрузка и сезонная эффективность
- ✓ Температура горячей хозяйственной воды до 55°С, температура охлажденной воды до 4°C
- Два варианта звукоизоляции: стандартный и сверх-бесшумный
- Управление работой в модульной конфигурации с установкой до 7 устройств каскадом

функции и характеристики

Двухвинтовой

Inverter



Электронный расширительный клапан

Размеры и зоны обслуживания

установка

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP ►► WIDHN-K	SL1 PL	140.2	185.2	220.2	260.2	320.2	360.2
А - Длина	mm	5172	5172	5172	5172	5752	5752
В - Ширина	mm	1543	1543	1543	1543	1543	1543
С - Высота	mm	2156	2156	2156	2156	2363	2363
A1	mm	1500	1500	1500	1500	1500	1500
A2	mm	700	700	700	700	700	700
B1	mm	700	700	700	700	700	700
B2	mm	1000	1000	1000	1000	1000	1000
Эксплуатационная масса	kg	5417	5417	7022	7022	9168	9168

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной

Для всех других конфигураций - см. в техническом описании.

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Стандартная акустическая конфигурация (Стандартно) EN Особо малошумная акустическая конфигурация

технические характеристики

Размер ►► WiDHN	N-KSL	.1 PL	140.2	185.2	220.2	260.2	320.2	360.2
ОХЛАЖДЕНИЕ 0% - НАГРЕВ 100%								
Холодильная мощность (EN 14511:2022)	(1)	kW	440	530	620	710	840	945
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	98,9	125	138	166	194	232
EER при полной нагрузке (EN14511:2022)	(1)		4,44	4,23	4,49	4,27	4,33	4,07
SEER	(6)		-	-	-	-	-	-
$\eta_{s,c}$	(6)	%	-	-	-	-	-	-
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 0%								
Тепловая мощность (EN 14511:2022)	(2)	kW	500	600	700	800	945	1050
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	121	151	163	190	216	248
СОР при полной нагрузке (EN14511:2022)	(2)	-	4,12	3,96	4,29	4,22	4,38	4,24
ОХЛАЖДЕНИЕ 100% - НАГРЕВ 100%								
Холодильная мощность (EN 14511:2022)	(3)	kW	445	535	625	705	845	960
Тепловая мощность (EN 14511:2022)	(3)	kW	580	708	806	913	1083	1247
Полная потребляемая мощность (EN 14511:2022)	(3)	kW	137	176	183	213	241	292
TER (EN 14511:2022)	(4)	-	7,47	7,05	7,81	7,61	7,98	7,55
Холодильные контуры		Nr				2		
Кол-во компрессоров		Nr				2		
Тип компрессоров		-			SCREW	INVERTER		
Хладагент		-			R-!	513A		
Номинальное напряжение		V			400/	3^/50		
Уровень звуковой мощности	(5)	dB(A)	-	-	-	-	-	-
Директива ErP (Energy Related Produ-	cts)							
SCOP - СРЕДНИЙ климат - W35	(6)	-	-	-	-	-	-	-
$\eta_{s,H}$	(6)	%	-	-	-	-	-	-
SCOP - СРЕДНИЙ климат - W55	(6)	-	-	-	-	-	-	-
η _{S,H}	(6)	%	-	-	-	-	-	-

(1) Данные, рассчитанные в соответствии со стандартом EN 14511: 2022, относятся к следующим условиям:

температура воды на холодной стороне = 12/7°C, температура воды на стороне источника = 30/35°C (2) Данные, рассчитанные в соответствии со стандартом EN 14511: 2022, относятся к следующим условиям: Температура воды на горячей стороне = 40/45°C, температура воды на стороне источника = $10/7^{\circ}$ С (3) Данные, рассчитанные в соответствии со стандартом EN 14511: 2022, относятся к

следующим условиям: Температура воды на холодной стороне = */7°C, температура воды на горячей стороне = */45°C

(4) TER = (Мощность охлаждения + Тепловая мощность) / (Общая потребляемая мощность) (5) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 96141 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.

(6) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Изделие соответствует требованиям Европейской директивы Erp (Energy Related Products). Она включает в себя Регламент Комиссии (EC) № 811/2013 (номинальная тепловая мощность ≤70 кВт при определенных контрольных условиях), Регламент Комиссии (ЕС) № 813/2013 (номинальная тепловая мощность ≤400 кВт при определенных контрольных условиях) и Регламент Комиссии (ЕС) № 2016/2281, также известный как Ecodesign Lot21.

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

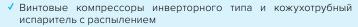
аксессуары

ECS

AMRX	Резиновые антивибрационные опоры	IVMSX	Модулирующий клапан
RCMRX	Выносной микропроцессорный пульт управления	SDV	Запорные клапаны на нагнетании и всасывании компрессора
PSX	Напряжение сети питания	RDNS	Переключающий клапан с двойными предохранительными
CONTA3	Счетчик энергии		клапанами
CMSC9	Модуль для последовательного соединения с системой	ISS	Изоляция конденсаторов
	централизованного управления по протоколу Modbus	IM	Увеличенная изоляция испарителя толщиной 20 мм.
CMSC10	Модуль последовательной связи с системой диспетчеризации на	EHCS	Нагреватели антифриза со стороны источника
	базе протокола LonWorks	EHWP	Противоморозные нагреватели для водяных труб на стороне пользы
CMSC11	Модуль последовательной связи с протоколом BACnet-IP	IFWX	Стальной сетчатый фильтр на стороне воды
SCP4	Коррекция уставки сигналом 0-10 В	RPR	Датчик утечки хладагента
SPC1	Корректировка установленного значения температуры воды на	FC2	Электромагнитный фильтр для снижения кондуктивного излучения
	выходе по сигналу 4-20 mA		компрессора
SPC2	Корректировка установленного значения температуры воды на	AMMSX	Антисейсмические виброопоры
	выходе по наружному датчику	AMMX	Резиновые антивибрационные опоры

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Функция ECOSHARE для автоматического управления группы машин


SCREWLine⁴-i

Водяной чиллер

Безконденсаторный Внутренняя установка

Мощность от 340 до 1440 kW

- Технические решения, снижающие воздействие на окружающую среду, с одним или двумя независимыми контурами, обеспечивающими повышенную надежность
- Хладагент R513A GWP = 631
- Высокая энергоэффективность сезонная СО значением показателя SEER до 8,60
- 3 режима работы: «Только холодная вода», «Только горяча вода» и «Реверсивность водяного контура»
- Два варианта звукоизоляции: стандартный и сверх-бесшумный
- Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Температура воды в конденсаторе в варианте только с высокой температурой (HWT) - до 65°C, температура воды в испарителе до -8°C

ErP

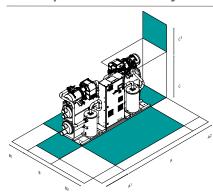
соответствующих продуктах представлена на сайте www.eurovent-certification.com

функции и характеристики

Двухвинтовой

Inverter

по водяному контуру



клапан

Intelliplant

Размеры и зоны обслуживания

установка

PA3MEP	▶▶ WDH-iK4	120.1	160.1	200.1	220.1	240.1	270.1	290.1	250.2	280.2	320.2	360.2	400.2	480.2	540.2
А - Длина	mm	2639	2639	2902	2902	3527	3527	4187	4083	4083	4233	4384	4651	4651	4651
В - Ширина	mm	1195	1195	1400	1400	1400	1400	1450	1195	1195	1195	1450	1495	1495	1495
С - Высота	mm	2103	2103	2293	2293	2293	2293	2375	2194	2194	2214	2375	2498	2498	2498
A1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
A2	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
B1	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
B2	mm	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
C1	mm	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Эксплуатационная ма	acca kg	3241	3328	4217	4207	4849	4884	5013	5484	5694	6475	7241	9225	9177	9225

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

РЕЖИМ РАБОТЫ:

OCO Работа только в режиме охлаждения (Стандартно) Работа с реверсированием водяного контура ОНО

OHI Nur Heißbetrieb

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Стандартная акустическая конфигурация (Стандартно) EN Особо малошумная акустическая конфигурация

ВЫСОКОТЕМПЕРАТУРНОЕ ВОДНОЕ ИСПОЛНЕНИЕ:

HWT Высокая температура воды

технические характеристики

Размер	▶ WD	H-iK4	120.1	160.1	200.1	220.1	240.1	270.1	290.1	250.2	280.2	320.2	360.2	400.2	480.2	540.2		
 Холодильная мощность (EN 14511:2022) 	(1)	kW	340	416	520	611	690	760	831	705	801	899	1065	1280	1355	1440		
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	66,5	80,8	101	119	137	149	165	137	155	176	207	249	268	287		
EER (EN 14511:2022)	(1)	-	5,10	5,14	5,12	5,15	5,02	5,09	5,02	5,14	5,16	5,10	5,14	5,15	5,06	5,02		
SEER	(5)	-	8,41	8,46	8,53	8,57	8,55	8,60	8,57	8,59	8,38	8,47	8,56	8,38	8,44	8,53		
$\eta_{s,c}$	(5)	%	328,4	330,4	333,2	334,8	334,0	336	334,8	335,6	327,2	330,8	334,4	327,2	329,6	333,2		
 Тепловая мощность (EN 14511:2022) 	(2)	kW	381	467	581	683	780	862	943	788	888	1008	1195	1456	1510	1633		
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	82,0	101	123	143	170	188	210	172	194	223	261	324	333	371		
COP (EN 14511:2022)	(2)	-	4,65	4,60	4,72	4,79	4,58	4,58	4,48	4,58	4,57	4,52	4,58	4,49	4,54	4,41		
Холодильные контуры		Nr		1									2					
Кол-во компрессоров		Nr				1				2								
Тип компрессоров	(4)	-							15	SW								
Хладагент		-							R-5	513A								
Расход жидкости (сторона потребителя)		l/s	16,1	19,8	24,7	29,0	32,8	36,1	39,5	33,5	38,0	42,7	50,6	60,8	65,8	72,2		
Поток воды (сторона источника)		l/s	19,5	23,8	29,8	35,0	39,6	43,5	47,7	40,3	45,8	51,6	61,0	73,2	79,4	87,3		
Номинальное напряжение		V		400							0/3~/50							
ST Уровень звуковой мощности	(3)	dB(A)	94	96	97	97	97	98	98	100	101	101	102	102	102	103		
EN Уровень звуковой мощности	(3)	dB(A)	91	93	94	94	94	95	95	97	98	98	99	99	99	100		

(1) Данные посчитаны в соответствии со стандартом EN 14511:2022 и относятся к следующим условиям: вода внутреннего теплообменника = 12/7°C. Вода внешнего теплообменника = 30/35°C

30/35°C (2) Versione HWT: Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура воды во внутреннем теплообменнике = 40/45°C, температура воды во внутреннем теплообменнике = 10/7°C (3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при

номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013. (4) ISW = винтовой компрессор со встроенным преобразователем частоты (5) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

аксессуары

SCREWLine⁴

Водяной чиллер

Безконденсаторный Внутренняя установка

Мощность от 572 до 1499 kW

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

- ✓ Винтовые компрессоры и два независимых контура, обеспечивающих повышенную надежность
- Оптимальное решение для установки при ремонте или при строительстве объектов недвижимости для первоначального капиталовложения
- ✓ Хладагент R134a GWP = 1430
- ✓ 3 режима работы: «Только холодная вода», «Только горяча вода» и «Реверсивность водяного контура»
- Два варианта звукоизоляции: стандартный и сверх-бесшумный
- ✓ Управление работой в модульной конфигурации с установкой до 7 устройств каскадом
- Узлы частичной и полной рекуперации встроены в систему
- 🗸 Температура воды в конденсаторе в варианте только с нагреванием (OHO) - до 65°C, температура воды в испарителе до -8°C

функции и характеристики

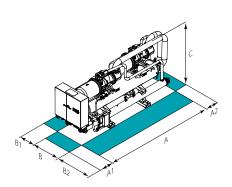
R-134a

Двухвинтовой

по водяному

KOHTVDV

Электронный расширительный


клапан

Intelliplant

Размеры и зоны обслуживания

Внутренняя

установка

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP I	▶ WDH-SB4	220.2	240.2	280.2	320.2	360.2	440.2	500.2	540.2	580.2
А - Длина	mm	4766	4766	4766	4785	4785	5028	5147	5147	5147
В - Ширина	mm	1408	1408	1408	1408	1408	1408	1408	1408	1408
С - Высота	mm	2033	2033	2033	2183	2183	2182	2308	2308	2308
A1	mm	1470	1470	1470	1470	1470	1470	1470	1470	1470
A2	mm	700	700	700	700	700	700	700	700	700
B1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000
B2	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000
Эксплуатационная м	iacca mm	4099	4119	4156	5854	5874	6004	6453	6681	6761

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

РЕЖИМ РАБОТЫ:

OCO Работа только в режиме охлаждения (Стандартно) Работа с реверсированием водяного контура ОНО

OHI Nur Heißbetrieb

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

Стандартная акустическая конфигурация (Стандартно) EN Особо малошумная акустическая конфигурация

РЕКУПЕРАЦИЯ ТЕПЛА:

Рекуперация тепла: не требуется (Стандартно)

D Частичная рекуперация энергии R Полная рекуперация энергии

ВЫСОКОТЕМПЕРАТУРНОЕ ВОДНОЕ ИСПОЛНЕНИЕ:

HWT Высокая температура воды

технические характеристики

Размер	WDF	I-SB4	220.2	240.2	280.2	320.2	360.2	440.2	500.2	540.2	580.2
 Холодильная мощность (EN 14511:2022) 	(1)	kW	572	613	706	867	978	1124	1299	1369	1499
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	109	120	138	164	188	213	244	273	304
EER (EN 14511:2022)	(1)	-	5,25	5,11	5,11	5,27	5,20	5,29	5,32	5,02	4,93
SEER	(5)	-	6,43	6,53	6,52	6,47	6,38	6,43	6,44	6,38	6,38
$\eta_{s,c}$	(5)	%	254,3	258,2	257,8	255,9	252,3	254,4	254,5	252,3	252,3
 Тепловая мощность (EN 14511:2022) 	(2)	kW	716	768	939	1033	1179	1454	1592	1740	1858
Полная потребляемая мощность (EN 14511:2022)	(2)	kW	144	155	189	206	237	293	322	351	379
COP (EN 14511:2022)	(2)	-	4,97	4,95	4,97	5,00	4,97	4,96	4,94	4,96	4,90
Холодильные контуры		Nr					2				
Кол-во компрессоров		Nr					2				
Тип компрессоров	(4)	-					DSW				
Хладагент		-					R-134a				
Расход жидкости (сторона потребителя)		l/s	27,2	29,2	33,6	41,2	46,5	53,4	61,7	65,1	71,2
Поток воды (сторона источника)		l/s	32,7	35,1	40,4	49,4	55,9	64,0	73,9	78,7	86,3
Номинальное напряжение		V					400/3~/50				
ST Уровень звуковой мощности	(3)	dB(A)	99	100	100	101	101	103	103	105	105
EN Уровень звуковой мощности	(3)	dB(A)	95	96	96	98	98	100	100	101	101

⁽¹⁾ Данные посчитаны в соответствии со стандартом EN 14511:2022 и относятся к следующим условиям: вода внутреннего теплообменника = 12/7°C. Вода внешнего теплообменника = 30/35°C (2) Versione HWT: Данные рассчитаны в соответствии со стандартом EN 14511:2022 для следующих условий: Температура воды во внутреннем теплообменнике = 40/45°C, температура воды во внутреннем теплообменнике = 10/7°C

(4) DSW = компрессор с двойным винтом

(5) Ланные рассчитаны в соответствии с требованиями стандарта FN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) $\,$ N° 2016/2281, также известное как Ecodesign Lot21.

аксессуары

SPC1	Корректировка установленного значения температуры воды на выходе по сигналу 4-20 mA	CMSC9	Модуль для последовательного соединения с системой централизованного управления по протоколу Modbus
SCP4 SPC2	Коррекция уставки сигналом 0-10 В Корректировка установленного значения температуры воды на	CMSC10	Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks
31 02	выходе по наружному датчику	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
IVMSX	Модулирующий клапан	RPR	Датчик утечки хладагента
CONTA2	Счетчик энергии	ECS	Функция ECOSHARE для автоматического управления группы машин
IFWX	Стальной сетчатый фильтр на стороне воды	CBS	Автоматические выключатели защиты от перегрузки
AMRX	Резиновые антивибрационные опоры	RDVS	Переключающий клапан с двойными предохранительными
RCMRX	Выносной микропроцессорный пульт управления		клапанами
PSX	Напряжение сети питания	MHP	Манометры высокого и низкого давления
SFSTR2	Устройство для плавного пуска компрессора	CO2P	2-х ходовой конденсатор
PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)		

⁽³⁾ Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1, при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

Chiller Centrifugo HFO

Водяной чиллер

Безконденсаторный Внутренняя установка

Мощность от 808 до 1599 kW

Komnahuя Clivet является участником программ сертификации EUROVENT, таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

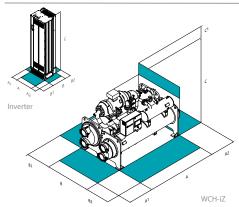
с совместимый

- Патентованный центробежный горизонтальный с противопоставленными крыльчатками и инверторным управлением
- Техническое решение для торговых и промышленных зданий крупных размеров, обеспечивает минимизацию воздействия на окружающую среду
- ✓ Хладагент R1234ze GWP = 7
- Крайне высокая энергоэффективность при полной нагрузке и сезонная энергоэффективность со значениями показателя SEER до 9,64
- Испаритель с падающей пленкой, экономайзер и система возврата масла
- ✓ Улучшенная звукоизоляция и отсутствие вибрации
- ✓ Компактные габаритные размеры: длина менее 4 метров
- √ Температура воды в конденсаторе до 40°С, температура воды в испарителе до 4°С

функции и характеристики

Центробежные

Inverte



расширительный клапан

Размеры и зоны обслуживания

установка

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

PA3MEP •	▶ WCH-iZ	230	270	300	350	380	420	450
РАЗМЕРНЫЕ ЕДИНИЦЫ								
А - Длина	mm	3820	3870	3770	3770	3770	3810	3810
В - Ширина	mm	1760	1760	1940	1940	1970	1970	1970
С - Высота	mm	2128	2128	2170	2170	2170	2170	2170
A1	mm	1200	1200	1200	1200	1200	1200	1200
A2	mm	1200	1200	1200	1200	1200	1200	1200
B1	mm	1000	1000	1000	1000	1000	1000	1000
B2	mm	1200	1200	1200	1200	1200	1200	1200
C1	mm	1200	1200	1200	1200	1200	1200	1200
Эксплуатационная масс	a kg	5700	5785	6269	6469	7546	7546	7648
PA3MEP	▶ WCH-iZ	230	270	300	350	380	420	450
РАЗМЕРНЫЕ ИНВЕРТОР	Ы							
А - Длина	mm	420	420	420	420	420	420	602
В - Ширина	mm	378	378	378	378	378	378	514
С - Высота	mm	1100	1100	1100	1100	1100	1100	2043
B1	mm	600	600	600	600	600	600	800
C1	mm	225	225	225	225	225	225	225
Эксплуатационная масс	a kg	125	125	125	125	125	125	300

HOT GAS BY PASS:

Hot gas by pass: не требуется (Стандартно)

В Hot gas by pass

технические характеристики

Размер	▶▶ W	CH-iZ	230	270	300	350	380	420	450
Охлаждение									
 Холодильная мощность (EN 14511:2022) 	(1)	kW	808	949	1069	1229	1353	1476	1599
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	144	169	185	212	227	249	272
EER (EN 14511:2022)	(1)	-	5,61	5,61	5,78	5,81	5,97	5,92	5,87
SEER	(4)	-	8,00	8,49	8,49	8,90	9,30	9,48	9,64
η _{s,c}	(4)	%	312,0	331,8	331,6	347,9	364,0	371,3	377,6
Холодильные контуры		Nr				1			
Кол-во компрессоров		Nr				1			
Тип компрессоров	(3)	-				CFGi			
Хладагент		-				R-1234ze			
Расход жидкости (сторона потребителя)		l/s	38,4	45,1	50,8	58,4	64,3	70,2	76,0
Поток воды (сторона источника)		-	45,6	53,6	60,1	69,0	75,7	82,6	89,6
Номинальное напряжение		V				400/3~/50			
Уровень звуковой мощности	(2)	dB(A)	99	101	99	99	101	100	100

уровено зууковом мощности (И) Данные, рассчитанные в соответствии с EN 14511:2022 относится к следующим условиям: теплообменнике (испарителе) = 12/7°С. теплообменнике (внешний обменник) = 30/35°С (2) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013

(3) CFGi = Инвертор скорректирована центробежный компрессор (4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) $\,$ N° 2016/2281, также известное как Ecodesign Lot21.

аксессуары

EV2R	Двухступенчатый испаритель и правосторонние соединения	AMMSX	Антисейсмические виброопоры
EV10P	Одноступенчатый испаритель и противоположные соединения	2VBYX	Моторизованный перепускной клапан конденсатора
EV30P	Испарителя в три этапа и сопротивляясь атак	CSIC	Экранированные соединительные кабели между инвертором и
EV16	Испаритель воды давление 16 бар		компрессором: длина 4,5 метра
IS40	Изоляция для испарителя с толщиной 40 мм	RPR	Датчик утечки хладагента
CO2R	Двухходовой конденсатор и правосторонние соединения	QSGX	Электрическая панель с главным выключателем
CO10P	Конденсатор с одним проходом и противоположными атаками	CCSQX	Соединительные кабели от электрического щита с главным
CO30P	Конденсатор с тремя проходами и противоположными атаками		выключателем (QS6X) до инвертора и электрического щита чиллера.
CO16	Давление воды в конденсаторе 16 бар	EVMAG	Увеличенный испаритель
AMMX	Резиновые антивибрационные опоры	COMAG	Увеличенный конденсатор
AMRX	Резиновые антивибрационные опоры	CTAS	Компрессор большего размера

EEA

Centrifugal Chiller

Водяной чиллер

Безконденсаторный Внутренняя установка

Мощность от 878 до 1933 kW

Компания Clivet является участником программ сертификации EUROVENT,таких продуктов как: "Чиллеры и Тепловые насосы". Информация о соответствующих продуктах представлена на сайте www.eurovent-certification.com

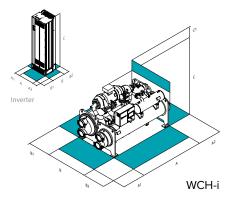
- ✓ Патентованный центробежный горизонтальный противопоставленными крыльчатками и инверторным управлением
- Техническое решение для торговых и промышленных зданий крупных размеров
- ✓ Хладагент R134a GWP = 1430
- √ Крайне высокая энергоэффективность при полной нагрузке и сезонная энергоэффективность со значениями показателя SEER
- ✓ Испаритель с падающей пленкой, экономайзер и система возврата масла
- ✓ Улучшенная звукоизоляция и отсутствие вибрации
- ✓ Компактные габаритные размеры: длина менее 4 метров
- ✓ Температура воды в конденсаторе до 40°С, температура воды в испарителе до 4°C

функции и характеристики

R-134a

Inverter

DASMED



Электронный

расширительный клапан

Размеры и зоны обслуживания

установка

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PASIVIEP	PP WCH-I	250	300	330	400	450	500	ວວບ
РАЗМЕРНЫЕ ЕДИНИЦЫ								
А - Длина	mm	3820	3870	3870	3770	3810	3810	3770
В - Ширина	mm	1760	1760	1760	1970	1970	1970	1970
С - Высота	mm	2130	2130	2130	2170	2170	2170	2170
A1	mm	1200	1200	1200	1200	1200	1200	1200
A2	mm	1200	1200	1200	1200	1200	1200	1200
B1	mm	1000	1000	1000	1000	1000	1000	1000
B2	mm	1200	1200	1200	1200	1200	1200	1200
C1	mm	1200	1200	1200	1200	1200	1200	1200
Эксплуатационная масса	a kg	5780	5852	6020	7264	7688	7940	8364
PA3MEP	▶► WCH-i	250	300	350	400	450	500	550
РАЗМЕРНЫЕ ИНВЕРТОРІ	Ы							
A Пянно	na na	420	420	420	420	420	602	602

PA3MEP	▶▶ WCH-i	250	300	350	400	450	500	550
РАЗМЕРНЫЕ ИНВЕРТОРЬ	ol							
А - Длина	mm	420	420	420	420	420	602	602
В - Ширина	mm	378	378	378	378	378	514	514
С - Высота	mm	1100	1100	1100	1100	1100	2043	2043
B1	mm	600	600	600	600	600	800	800
C1	mm	225	225	225	225	225	225	225
Эксплуатационная масс	a kg	125	125	125	125	125	300	300

HOT GAS BY PASS:

Hot gas by pass: не требуется (Стандартно)

В Hot gas by pass

технические характеристики

Размер	▶ ▶ W	/CH-i	250	300	350	400	450	500	550
Охлаждение									
 Холодильная мощность (EN 14511:2022) 	(1)	kW	878	1054	1230	1405	1581	1757	1933
Полная потребляемая мощность (EN 14511:2022)	(1)	kW	156	182	211	236	262	292	326
EER (EN 14511:2022)	(1)	-	5,62	5,80	5,82	5,97	6,03	6,01	5,93
SEER	(4)	-	7,66	7,99	8,36	8,82	8,97	9,01	9,06
η _{s,c}	(4)	%	298,2	311,7	326,5	344,6	350,6	352,4	354,3
Холодильные контуры		Nr				1			
Кол-во компрессоров		Nr				1			
Тип компрессоров	(3)	-				CFGi			
Хладагент		-				R-134a			
Расход жидкости (сторона потребителя)		l/s	41,7	50,1	58,5	66,8	75,1	83,5	91,9
Поток воды (сторона источника)		-	49,5	59,2	69,0	78,5	88,2	98,1	108,0
Номинальное напряжение		V				400/3~/50			
Уровень звуковой мощности	(2)	dB(A)	99	99	100	99	99	100	100

уровство зукровом мощности

(1) Данные, рассчитанные в соответствии с EN 14511:2022 относится к следующим условиям: теплообменнике (испарителе) = 12/7°С. теплообменнике (внешний обменник) = 30/35°С

(2) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствиу информативных документах: EU 2016/2281, UE 813/2013, UE 811/2013

(3) CFGi = Инвертор скорректирована центробежный компрессор (4) Данные рассчитаны в соответствии с требованиями стандарта EN 14825:2018

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) $\,$ N° 2016/2281, также известное как Ecodesign Lot21.

аксессуары

EV2R	Двухступенчатый испаритель и правосторонние соединения	AMMSX	Антисейсмические виброопоры
EV10P	Одноступенчатый испаритель и противоположные соединения	2VBYX	Моторизованный перепускной клапан конденсатора
EV30P	Испарителя в три этапа и сопротивляясь атак	CSIC	Экранированные соединительные кабели между инвертором и
EV16	Испаритель воды давление 16 бар		компрессором: длина 4,5 метра
IS40	Изоляция для испарителя с толщиной 40 мм	QSGX	Электрическая панель с главным выключателем
CO2R	Двухходовой конденсатор и правосторонние соединения	CCSQX	Соединительные кабели от электрического щита с главным
CO10P	Конденсатор с одним проходом и противоположными атаками		выключателем (QS6X) до инвертора и электрического щита чиллера.
CO30P	Конденсатор с тремя проходами и противоположными атаками	EVMAG	Увеличенный испаритель
CO16	Давление воды в конденсаторе 16 бар	COMAG	Увеличенный конденсатор
AMMX	Резиновые антивибрационные опоры	CTAS	Компрессор большего размера
AMRX	Резиновые антивибрационные опоры		

SPINchiller³

Водяной чиллер

Безконденсаторный Внутренняя установка

Мощность от 265 до 445 kW

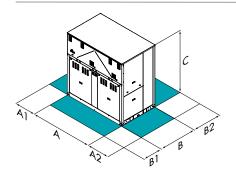
- ✓ Спиральные компрессоры и пластинчатые теплообменники
- ✓ Техническое решение для жестких климатических условий, применяется в комплексе с выносными конденсаторами
- √ Два независимых контура, обеспечивающих повышенную надежность
- ✓ Хладагент R410A GWP = 2088
- √ Все чувствительные детали и узлы защищены от воздействия погодных факторов
- ✓ Основные гидравлические узлы расположены во внутреннем
- ✓ Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Температура конденсации до 60°С, температура охлажденной воды до -8°C

функции и характеристики

конденсатором установка

R-410A

Герметичный



Электронный Спиральный расширительный

клапан

Intelliplant

Размеры и зоны обслуживания

PA3MEP ▶▶	MSE-XSC3	90.4	100.4	110.4	120.4	140.4	160.4
А - Длина	mm	2350	2350	2350	2350	2350	2350
В - Ширина	mm	1150	1150	1150	1150	1150	1150
С - Высота	mm	2210	2210	2210	2210	2210	2210
A1	mm	700	700	700	700	700	700
A2	mm	700	700	700	700	700	700
B1	mm	1200	1200	1200	1200	1200	1200
B2	mm	500	500	500	500	500	500
Эксплуатационная масса	kg	1447	1611	1668	1722	1773	1818

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

НИЗКАЯ ТЕМПЕРАТУРА:

- Низкотемпературная версия: не требуется (Стандартно)
- В Низкая температура воды

РЕКУПЕРАЦИЯ ТЕПЛА:

- Рекуперация тепла: не требуется (Стандартно)
- D Частичная рекуперация энергии

технические характеристики

Размер ▶▶ М	MSE-X	(SC3	90.4	100.4	110.4	120.4	140.4	160.4
 Холодильная мощность 	(1)	kW	265	289	313	349	406	445
Потребление компрессоров	(1)	kW	75,1	82,0	90,1	101	114	128
Полная потребляемая мощность блока	(1)	kW	75,6	82,5	90,6	102	115	128
EER	(2)	-	3,53	3,52	3,47	3,44	3,55	3,48
Холодильные контуры		Nr				2		
Кол-во компрессоров		Nr				4		
Тип компрессоров		-			SCF	ROLL		
Хладагент		-			R-4	10A		
Номинальное напряжение		V			400/	3~/50		
Уровень звуковой мощности	(3)	dB(A)	82	82	83	84	86	86
5 4							_	

Все блоки отправляются, заправленные, под избыточным давлением, азотом. (разм. 220.2-580.2)

(1) Данные приведены для следующих условий: Температура воды во внутреннем теплообменнике (испарителе) = 12/7°C; Температура конденсации = 50°C (2) EER относится только к компрессорам

(3) Значения звуковой мощности относятся к оборудованию при полной нагрузке, при номинальных условиях испытаний. Измерения проводятся в соответствии с UNI EN ISO 9614-1. при номинальных стандартных условиях, установленных в соответствующих нормативных документах: EU 2016/2281, EU 813/2013, EU 811/2013.

аксессуары

AMRX	Резиновые антивибрационные опоры	CVSX	Два механических запорных клапана
RCMRX	Выносной микропроцессорный пульт управления	IFWX	Стальной сетчатый фильтр на стороне воды
PSX	Напряжение сети питания	IVFDT	Инверторный привод изменяет расход в зависимости от температуры
CONTA2	Счетчик энергии		на стороне источника
CMSC9	Модуль для последовательного соединения с системой	MHP	Манометры высокого и низкого давления
	централизованного управления по протоколу Modbus	SDV	Запорные клапаны на нагнетании и всасывании компрессора
CMSC10	Модуль последовательной связи с системой диспетчеризации на	RPR	Датчик утечки хладагента
	базе протокола LonWorks	2PM	Гидрогруппа с двумя насосами
CMSC11	Модуль последовательной связи с протоколом BACnet-IP	2PMV	Гидрогруппа на стороне потребителя с 2 насосами с инверторным
SCP4	Коррекция уставки сигналом 0-10 В		приводом
ECS	Функция ECOSHARE для автоматического управления группы машин	PTCO	Подготовка к отгрузке с помощью контейнера
PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)		
SFSTR	Устройство для плавного пуска компрессора		

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

SCREWLine³

Водяной чиллер

Безконденсаторный Внутренняя установка

Мощность от 300 до 1427 kW

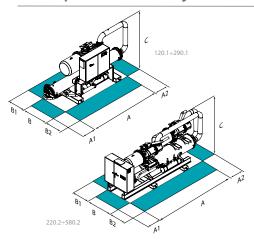
- ✓ Винтовые компрессоры и кожухотрубный испаритель
- √ Техническое решение для жестких климатических условий, применяется в комплексе с выносными конденсаторами
- независимых контура, обеспечивающих √ Один или два повышенную надежность
- ✓ Хладагент R134a GWP = 1430
- ✓ Все чувствительные детали и узлы защищены от воздействия погодных факторов
- ✓ Два варианта звукоизоляции: стандартный и сверх-бесшумный
- 🗸 Управление работой в модульной конфигурации с установкой до 8 устройств каскадом
- ✓ Температура конденсации до 65°С, температура охлажденной воды до -8°C

функции и характеристики

конденсатором

Внутренняя установка

Двухвинтовой



Электронный Intelliplant расширительный

клапан

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зонами.

PA3MEP ►► M	DE-SL3	120.1	140.1	160.1	180.1	200.1	220.1	250.1	270.1	290.1
А - Длина	mm	4210	4210	4210	4189	4189	4189	4189	4324	4324
В - Ширина	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350
ST-EXC C - Высота	mm	1558	1558	1558	1642	1642	1642	1642	1657	1657
EN-EXC C - Высота	mm	1573	1573	1573	1750	1750	1750	1750	1750	1750
A1	mm	700	700	700	700	700	700	700	700	700
A2	mm	700	700	700	700	700	700	700	700	700
B1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000
B2	mm	1160	1160	1160	1160	1160	1160	1160	1160	1160
ST-EXC Рабочий вес	kg	2073	2152	2229	2821	2832	2843	2895	2981	3012
EN-EXC Рабочий вес	ka	2237	2345	2422	3044	3055	3066	3118	3204	3235

PA3MEP ►► MD	E-SL3	220.2	240.2	260.2	280.2	300.2	320.2	340.2	360.2	400.2	440.2	470.2	500.2	540.2	580.2
А - Длина	mm	4638	4638	4638	4638	4638	4638	4992	4992	5006	5006	5006	5077	5077	5077
В - Ширина	mm	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
ST-EXC C - Высота	mm	1790	1790	1790	1790	1790	1790	1995	1995	2010	2010	2010	2145	2145	2145
EN-EXC C - Высота	mm	1900	1900	1900	1900	1900	1900	2121	2121	2121	2121	2121	2239	2239	2239
A1	mm	1410	1410	1410	1410	1410	1410	1410	1410	1410	1410	1410	1410	1410	1410
A2	mm	700	700	700	700	700	700	700	700	700	700	700	700	700	700
B1	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
B2	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
ST-EXC Рабочий вес	kg	3390	3422	3497	3587	3681	3745	4448	4675	4763	4784	4832	5680	5817	5876
EN-EXC Рабочий вес	kg	3830	3862	3966	4013	4107	4171	5010	5267	5388	5445	5493	6318	6455	6514

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ST-EXC Стандартное (ST)-Версия Excellence EN-EXC Особомалошумное (EN)-Версия Excellence

НИЗКАЯ ТЕМПЕРАТУРА:

Низкотемпературная версия: не требуется (Стандартно)

В Низкая температура воды

ВЕРСИЯ:

EXC Версия Excellence (Стандартно)

АКУСТИЧЕСКАЯ КОНФИГУРАЦИЯ:

ST Стандартная акустическая конфигурация (Стандартно) EN Особо малошумная акустическая конфигурация

УСТАНОВКА БЛОКА:

Внутренняя установка (Стандартно)

ДВОЙНАЯ УСТАВКА:

Двойная уставка: не требуется (Стандартно)

DSP Двойная уставка

технические характеристики

Размер		▶▶ N	IDE-SL3	120	.1	140.1	160	0.1	180.1	20	0.1	220.1	2	50.1	270.	1 2	90.1
ST/EN-EXC	 Холодильная мощность 	(1)	kW	300		364	40	1	466	50)8	566	- 6	520	683		728
ST/EN-EXC	Потребление компрессоров	(1)	kW	69,1		82,4	90,	5	105	11	4	128	•	140	154		165
ST/EN-EXC	Полная потребляемая мощность блока	(1)	kW	69,6	;	82,9	91,	0	105	11	4	128		140	154		165
ST/EN-EXC	EER	(2)	-	4,35	,	4,42	4,4	3	4,44	4,4	46	4,42	4	1,43	4,44		4,42
ST/EN-EXC	Холодильные контуры		Nr							•	l						
ST/EN-EXC	Кол-во компрессоров		Nr								l						
ST/EN-EXC	Тип компрессоров	(3)	-							DS	W						
ST/EN-EXC	Хладагент		-							R-13	34a						
ST/EN-EXC	Номинальное напряжение		V							400/3	3~/50						
ST-EXC	Уровень звуковой мощности	(4)	dB(A)	91		95	96	S	98	9	8	99		101	101		101
EN-EXC	Уровень звуковой мощности	(4)	dB(A)	85		89	90)	92	9	2	93		95	95		95
Размер		▶▶ N	IDE-SL3	220.2	240.2	260.2	280.2	300.2	320.2	340.2	360.2	400.2	440.2	470.2	500.2	540.2	580.2
ST/EN-EXC	 Холодильная мощность 	(1)	kW	550	585	642	720	757	794	848	899	997	1115	1159	1231	1344	1427
ST/EN-EXC										405	200		055				000
JI/LIV LAC	Потребление компрессоров	(1)	kW	128	137	150	164	173	181	195	208	228	255	267	280	307	329
ST/EN-EXC	Потребление компрессоров Полная потребляемая мощность блока	<u>(1)</u> <u>(1)</u>	kW kW	128 128	137 138	150 151	164 165	173 174	181	195	208	228	256	267 268	280	307 308	329
							_	_									
ST/EN-EXC	Полная потребляемая мощность блока	(1)	kW	128	138	151	165	174	182	196	209	228	256	268	281	308	329
ST/EN-EXC ST/EN-EXC	Полная потребляемая мощность блока EER	(1)	kW	128	138	151	165	174	182	196	209 4,31	228	256	268	281	308	329
ST/EN-EXC ST/EN-EXC ST/EN-EXC	Полная потребляемая мощность блока EER Холодильные контуры	(1)	kW - Nr	128	138	151	165	174	182	196 4,34	209 4,31 2	228	256	268	281	308	329
ST/EN-EXC ST/EN-EXC ST/EN-EXC ST/EN-EXC	Полная потребляемая мощность блока EER Холодильные контуры Кол-во компрессоров	(1)	kW - Nr	128	138	151	165	174	182	196 4,34	209 4,31 2 2 5W	228	256	268	281	308	329
ST/EN-EXC ST/EN-EXC ST/EN-EXC ST/EN-EXC ST/EN-EXC	Полная потребляемая мощность блока EER Холодильные контуры Кол-во компрессоров Тип компрессоров	(1)	kW - Nr	128	138	151	165	174	182	196 4,34	209 4,31 2 2 5W 34a	228	256	268	281	308	329
ST/EN-EXC ST/EN-EXC ST/EN-EXC ST/EN-EXC ST/EN-EXC ST/EN-EXC	Полная потребляемая мощность блока EER Холодильные контуры Кол-во компрессоров Тип компрессоров Хладагент	(1)	kW - Nr	128	138	151	165	174	182	196 4,34 2 DS R-1	209 4,31 2 2 5W 34a	228	256	268	281	308	329

Все блоки отправляются, заправленные, под избыточным давлением, азотом. (разм. 220.2-

(1) Данные приведены для следующих условий: Температура воды во внутреннем теплообменнике (испарителе) = 12/7°C; Температура конденсации = 45°C (2) EER относится только к компрессорам (3) DSW = компрессор с двойным винтом

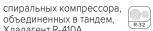
(4) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013

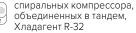
аксессуары

Резиновые антивибрационные опоры	SPC1	Корректировка установленного значения температуры воды на
Выносной микропроцессорный пульт управления		выходе по сигналу 4-20 mA
Напряжение сети питания	SPC2	Корректировка установленного значения температуры воды на
Счетчик энергии		выходе по наружному датчику
Модуль для последовательного соединения с системой	ECS	Функция ECOSHARE для автоматического управления группы машин
централизованного управления по протоколу Modbus	PFCP	Конденсаторы для увеличения коэффициента мощности (cosfi>0,9)
Модуль последовательной связи с системой диспетчеризации на	SFSTR2	Устройство для плавного пуска компрессора
базе протокола LonWorks	CBS	Автоматические выключатели защиты от перегрузки
Модуль последовательной связи с протоколом BACnet-IP		
Коррекция уставки сигналом 0-10 В		
	Выносной микропроцессорный пульт управления Напряжение сети питания Счетчик энергии Модуль для последовательного соединения с системой централизованного управления по протоколу Modbus Модуль последовательной связи с системой диспетчеризации на базе протокола LonWorks Модуль последовательной связи с протоколом BACnet-IP	Выносной микропроцессорный пульт управления Напряжение сети питания Счетчик энергии Модуль для последовательного соединения с системой дентрализованного управления по протоколу Modbus Модуль последовательной связи с системой диспетчеризации на SFSTR2 базе протокола LonWorks Модуль последовательной связи с протоколом BACnet-IP

Для помещений со средней посещаемостью

SMARTPack² **CLIVETPack**3i **CLIVETPack**³ 29000 ÷ 60000 m³/h 3200 ÷ 10500 m³/h 9500-34000 m³/h Расход воздуха (20 ÷ 45 kW) (60 ÷ 190 kW) (190 ÷ 380 kW) ErP ErP, **ErP** ErP соответствие Продукты **W** R-410A R-32 AIR ** CKN-XHE2i 7.1-14.2 CSRN-iY 20.2-56.4 CSRN-Y 60.4-120.4 Воздушный источник Тепловой насос Вентиляция с электрон управлением и переменный расход FC Free Cooling Термодинамическая рекуперация REVO термодинамическая рекуперация энергии Электронная фильтрация





Хладагент R-410A

АрДля помещений с высокой посещаемостью

Полная подача свежего воздуха

CLIVETPack³ⁱ

CLIVETPack² FFA

4000 ÷ 25000 m³/h (40 ÷ 160 kW)

3000 ÷ 9000 m³/h (40 ÷ 90 kW)

CSNX-iY 20.2-40.4

CSRN-XHE2 FFA 12.2-24.4

PACKAGED System

Элементы системы

СЕРИЯ	РАЗМЕР ОТ	до	НАИМЕНОВАНИЕ		СТР.
Автономные кондиц. / Тепловые насосы	- возд. источник - і	крышныі	й кондиционер для помещений со ср	едним по	осещ
CKN-XHE2i	7.1	14.2	SMARTPack ²		102
CSRN-iY	20.2	56.4	CLIVETPack ³ⁱ		104
CSRN-Y	60.4	120.4	CLIVETPack ³		106
Автономные кондиц. / Тепловые насосы	- возд. источник - і	крышны	й кондиционер для помещений с выс	оким по	сещ
CSNX-iY	20.2	40.4	CLIVETPack ³ⁱ	New	110
Автономные кондиц. / Тепловые насосы	- возд. источник - і	крышны	й кондиционер с полной подачей све	ж. возду	ха
CSRN-XHE2-FFA	12.2	24.4	CLIVETPack ² FFA		112

SMARTPack²

Крышный кондиционер

СКN-ХНЕ2і: реверсивный тепловой насос Воздушное охлаждение Установка на крыше

Мощность от 20 до 45 kW

Компания Clivet участвует в программе ECP для "крыш". Проверьте срок действия сертификата на сайте: www.eurovent-certification.com

ErP

- ✓ Full inverter
- Повышенная энергоэффективность при частичных нагрузках
- √ Расширенный диапазон рабочих параметров (-15°C в режиме нагревания)
- ✓ Повышенная эффективность фильтрации при низком энергопотреблении вентиляторов
- Термодинамическая рекуперация
- ✓ Умное управление процессами размораживания и естественного охлаждения
- √ Простота установки, все компоненты размещаются внутри машины
- √ Дистанционное и централизованное управление системой с помощью INTELLIAIR

Стандартно блоки поставляются с пультом управления. Основные функции:

вкл/выкл блока

основная информация о блоке

программирование на день/неделю

изменение уставки по температуре

изменение уставки по влажности

ручной или автоматический выбор режима зима/лето

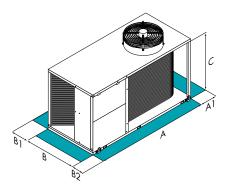
функции и характеристики

охлаждение

Full inverter

COOLING

рекуперация управление вентилятором


Электронный расширительный клапан

расход воздуха

расход воздуха

INTELLIAIR

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния. показанные зелеными зонами.

PA3MEP ▶▶ CKN-XHE2i 7.1 101 14.2 А - Длина mm 2250 2250 2610 1150 1590 В - Ширина mm 1150 С - Высота mm 1210 1510 1660 Δ1 mm 1000 1000 1000 1000 R1 mm 1000 1000 B2 mm 1000 1000 1000 CAK/CBK Эксплуатационная масса kg 464 576 818 CCK Эксплуатационная масса kg 482 600 853

- САК Конфигурация с полной рециркуляцией (САК)
- СВК Рециркуляцией и подачей свежего воздуха (СВК)
- ССК Конфигурации с дополнительным выбросным вентилятором, камерой смешения и выбросом отработанного воздуха

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

CBK

CAK онфигурация с одним вентилятором для работы в режиме полной

рециркуляции (Стандартно)

Конфигурация с одним вентилятором для рециркуляции и забора

свежего воздуха на смешение

ССК

Конфигурации с дополнительным выбросным вентилятором, камерой смешения и выбросом отработанного воздуха

технические характеристики

Размер	KN-X	HE2i	7.1	10.1	14.2	
 Холодильная мощность 	(1)	kW	20,2	30,0	45,2	
Явная холодильная мощность	(1)	kW	16,8	24,9	37,9	
Потребление компрессоров	(1)	kW	5,4	8,7	11,8	
 ◆ Холодильная мощность (EN 14511:2022) (9) kW 			19,0	28,4	42,1	
EER (EN 14511:2022)	(9)	-	3,08	2,88	2,97	
 Тепловая мощность 	(2)	kW	20,2	28,3	42,8	
Потребление компрессоров	(2)	kW	4,9	7,2	10,0	
 ◆ Тепловая мощность (EN 14511:2022) 	(10)	kW	20,5	29,1	43,1	
COP (EN 14511:2022)	(10)		3,26	3,25	3,28	
Холодильные контуры		Nr	1	1	1	
Кол-во компрессоров		Nr	1	1	2	
Тип компрессоров	(3)	-	ROT	SCROLL	ROT	
Расход приточного воздуха		m³/h	4000	6000	9000	
Тип приточного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	
Количество приточных вентиляторов		Nr	1	1	1	
Макс. статический напор приточного вентилятора	(5)	Pa	380	680	510	
Тип вытяжного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	
Количество вытяжных вентиляторов	(6)	Nr	1	1	1	
Вентиляторы внешней секции	(4)	-	AX/EC	AX/EC	AX/EC	
Номинальное напряжение		V	400/3~/50 +N	400/3~/50 +N	400/3~/50 +N	
Уровень звуковой мощности снаружи	(7)	dB(A)	83	85	88	
Директива ErP (Energy Related Produ	ıcts)					
SEER - СРЕДНИЙ климат	(8)	-	4,58	4,37	4,48	
ls.c (8) %		%	180,2	171,9	176,2	
SCOP - СРЕДНИЙ климат	СОР - СРЕДНИЙ климат (8) -		3,22	3,20	3,27	
$\eta_{s,H}$	(8)	%	125,8	125,0	127,8	

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.
Рабочие характеристики относятся к работе при 30% впуска свежего воздуха и выпуске

некоторого объема воздуха; (конфигурация ССК) (1) Параметры внутреннего воздуха 27°С/19°С М.Т. Температура воздуха на входе внешнего

- теплообменника 35°C (2) Температура внутреннего воздуха 20°C С.Т. Наружная температура 7°C С.Т./6°C М.Т.
- (3) ROT = роторный компрессор; SCROLL = спиральный компрессор
- (4) RAD = радиальный вентилятор; АХ = осевой вентилятор; ЕС = электронно-коммутируемый (5) Внешнее статическое давление на сеть для преодоления сопротивления подающих и забирающих воздуховодов
- (6) Конфигурация для подачи свежего воздуха, рециркуляцией и вытяжной секцией; (только с конфигурацией ССК)
- (7) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с EN 12101-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013.
- (8) Данные рассчитаны в соответствии с EN 14825:2022 (9) Мощность при полной рециркуляции в соответствии с EN 14511:2022, температура воздуха внутри помещения 27°C C.T./19°C В.Т.; температура наружного воздуха 35°C; ЕЕR в соответствии с EN 14511:2022
- (10) Производительность при полной рециркуляции в соответствии с EN 14511:2022, температура воздуха внутри помещения 20°С; температура наружного воздуха 7°С С.Т./6°С В.Т.; СОР в соответствии с EN 14511:2022

Упаковка в деревянном ящике + фумигация

аксессуары

FCE	Свободное-охлаждение в соответствии с наружной энтальпией	PSAF	Дифференциальное реле перепада давления на загрязненных
PAQC	Датчик качества воздуха для регулирования CO2 ч/м		воздушных фильтрах
PAQCV	Датчик качества воздуха для регулирования CO ₂ и ЛОС ч/м	CHW2	2-х рядный водяной нагреватель
SER	Клапан свежего воздуха с ручным приводом (СВК версия)	3WVM	Регулирующий 3-х ходовый клапан
SERM	Заслонка внешнего воздуха с механизированным открытием и	EH10	6 кВт электронагреватели
	закрытием (вариант СВК)	EH12	9 кВт электронагреватели
SFCM	Плавное регулирование заслонкой СВОБОДНОГО ОХЛАЖДЕНИЯ	EH15	13.5 кВт электронагреватели
	(стандартная версия ССК)	EH17	9 кВт электронагреватели (разм. 12.2÷16.2)
PCOSM	Постоянный расход воздуха на выходе	EH20	24 кВт электронагреватели
PVAR	Переменный расход воздуха	CPHG	Теплообменник подогрева горячим газом
GC01	Газовый конденсационный модуль нагрева с плавным	HSE3	Пароувлажнитель с погружными электродами 3 кг/ч
0001	регулированием 35 кВт	HSE5	Пароувлажнитель с погружными электродами 5 кг/ч
GC08	Газовый конденсационный модуль нагрева с плавным	HSE8	Пароувлажнитель с погружными электродами 15 кг/ч (разм. 20.4÷24.4)
0000	регулированием 44 кВт	AMRX	Резиновые антивибрационные опоры
GC09	Модуль конденсационного газового нагрева с управлением 65 кВт	UVC	UV-C-Lampen mit keimtötender Wirkung
GC10	Модуль конденсационного газового нагрева с управлением оз квт	PCMO	Сэндвич-панели класса огнезащиты МО
GC10	модуль конденсационного газового нагрева с управлением 82 квт (разм. 20.4÷24.4)	VENH	Вентиляторы с повышенным напором
DOFO	,	CSOND	Контроль температуры и влажности, датчики смонтированы на машине
PGFC	Защитная решетка теплообменника	CTT	Контроль температуры с помощью термостата
PGCCH	Защитные решетки от града	PTAAX	Дистанционный датчик температуры воздуха в помещении
F7	Высокоэффективный воздушный фильтр класса F7	IOTX	Промышленный модуль ІоТ для реализации функций и сервисов в
F9	Высокоэффективный воздушный фильтр класса F9		сопряжении с облачными платформами
FES	Высокоэффективный воздушный фильтр класса F9	PTCO	Подготовка к отгрузке с помощью контейнера

LBPF

©CLIVET /

CLIVETPack3i

Крышный кондиционер

CSRN-iY: Реверсивный тепловой насос Воздушное охлаждение Установка на крыше

Мощность от 60 до 190 kW

Компания Clivet участвует в программе ECP для "крыш". Проверьте срок действия сертификата на сайте: www.eurovent-certification.com

- √ Хладагент R32
- √ Full inverter
- ✓ Новый шаг в развитии идеи энергосбережения
- ✓ Рекуперация энергии с помощью энтальпийного роторного колеса
- ✓ Повышенная эффективность фильтрации энергопотреблении вентиляторов
- √ Расширенный диапазон рабочих параметров (-15°C в режиме нагревания)
- √ Высокая надежность и энергоэффективность, обеспечиваемые двойным холодильным контуром
- √ Дистанционное и централизованное управление системой с помощью INTELLIAIR

функции и характеристики

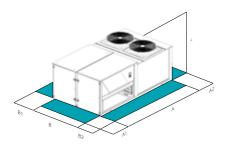
Воздушное охлаждение

COOLING термодинамической рекуперации REVO

энтальпийного роторного колеса

Электронное управление вентилятором

расход воздуха



Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MER	►► CSR	N-iY	20.2	28.2	40.4	56.4
А - Длина		mm	3190	3970	3970	5315
В - Ширина	3	mm	2300	2300	2300	2300
С - Высота		mm	1480	1510	1910	1920
A1		mm	2000	2000	2000	2600
A2		mm	1500	1500	1500	1500
B1		mm	1500	1500	1500	1500
B2		mm	1500	1500	1500	1500
CAK	Эксплуатационная масса	kg	1087	1187	1678	2296
CBK	Эксплуатационная масса	kg	1087	1187	1678	2296
CBK-G	Эксплуатационная масса	kg	1103	1203	1714	2345
CCK-REVO	Эксплуатационная масса	kg	1158	1258	1744	2386

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

САК Конфигурация с полной рециркуляцией (САК)

СВК Рециркуляцией и подачей свежего воздуха (СВК) СВК-G Конструкция с одинарным вентиляционным блоком для рециркуляции, обновления и выброса воздуха ССК-REVO Конструкция с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

CAK онфигурация с одним вентилятором для работы в режиме полной рециркуляции (Стандартно) **CBK**

Конфигурация с одним вентилятором для рециркуляции и забора свежего воздуха на смешение

CBK-G Конструкция с одинарным вентиляционным блоком для рециркуляции, обновления и выброса воздуха

ССК-REVO Конструкция с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO

технические характеристики

Размер	>> (CSRN-iY	20.2	28.2	40.4	56.4
CCK-REVO ◆ Холодильная мощность	(1)	kW	65,9	87,6	129,0	174,0
ССК-REVO Явная холодильная мощность	(1)	kW	55,9	73,7	99,5	159,0
CCK-REVO Потребление компрессоров	(1)	kW	18,1	21,6	38,0	49,6
ССК-REVO ◆ Холодильная мощность (EN 14511:2022)	(9)	kW	59,0	78,0	116,2	155,2
CCK-REVO EER (EN 14511:2022)	(9)		2,86	2,88	2,67	2,73
CCK-REVO ◆ Тепловая мощность	(2)	kW	61,0	80,1	126,0	167,0
CCK-REVO Потребление компрессоров	(2)	kW	12,6	15,7	30,1	38,0
CCK-REVO ◆ Тепловая мощность (EN 14511:2022)	(10)	kW	58,0	76,8	119,7	162,3
CCK-REVO COP (EN 14511:2022)	(10)	-	3,73	3,72	3,19	3,38
ССК-REVO Холодильные контуры		Nr	2	2	2	2
ССК-REVO Кол-во компрессоров		Nr	2	2	4	4
ССК-REVO Тип компрессоров	(3)	-	ROT	SCROLL	ROT	SCROLL
CCK-REVO Расход приточного воздуха		m³/h	13000	17000	23000	32000
ССК-REVO Тип приточного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	RAD/EC
CCK-REVO Количество приточных вентиляторов		Nr	1	2	2	3
ССК-REVO Макс. статический напор приточного вентилятора	(5)	Pa	330	450	410	300
ССК-REVO Тип вытяжного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	RAD/EC
CCK-REVO Количество вытяжных вентиляторов	(6)	Nr	1	2	2	2
CCK-REVO Вентиляторы внешней секции	(4)	-	AX/EC	AX/EC	AX/EC	AX/EC
CCK-REVO Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Уровень звуковой мощности снаружи	(7)	dB(A)	88	89	88	90
Директива ErP (Energy Related Products)						
SEER - СРЕДНИЙ климат	(8)	-	4,92	4,72	4,85	4,56
$\eta_{s,c}$	(8)	%	193,8	185,8	191,0	179,4
SCOP - СРЕДНИЙ климат	(8)	-	3,91	3,79	3,81	3,92
$\eta_{S,H}$	(8)	%	153,4	148,6	149,4	153,8

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21. Значения эксплуатационных характеристик указаны для режима работы с объемом забора внешнего воздуха и выброса 30% и с использованием системы термодинамической рекуперации REVO (ССК-REVO) (1) Температура окружающей среды 27°C сух. терм. / 19°C влаж. терм. Температур воздуха, поступающего во внешний обменник, 35°C сух. терм. / 24°C влаж. терм. (2) Температура окружающей среды 20°C сух. терм. / 12°C влаж. терм. Температур воздуха,

- поступающего во внешний обменник, 7°C сух. терм. / 6°C влаж. терм (3) ROT = роторный компрессор; SCROLL = спиральный компрессор
- (4) RAD = радиальный вентилятор; AX = осевой вентилятор; EC = электронно-коммутируемый (5) Внешнее статическое давление на сеть для преодоления сопротивления подающих и
- (6) Только для конструкции с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO (CCK-REVO)
- (7) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях. определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013
- (8) Данные рассчитаны в соответствии с EN 14825:2022
 (9) Мощность при полной рециркуляции в соответствии с EN 14511:2022, температура воздуха внутри помещения 27°C C.T./19°C В.Т.; температура наружного воздуха 35°C; EER в соответствии с EN 14511:2022
- (10) Производительность при полной рециркуляции в соответствии с EN 14511:2022, температура воздуха внутри помещения 20°С; температура наружного воздуха 7°С С.Т./6°С В.Т.: COP в соответствии с EN 14511:2022

аксессуары

M5

R3

SERM

SER

FC	Термическое ECTECTBEHHOE ОХЛАЖДЕНИЕ (варианты CBK-G, CCK-REVO)
FCE	Энтальпическое ECTECTBEHHOE ОХЛАЖДЕНИЕ (варианты CBK-G, CCK-REVO)
REVO	Система термодинамической рекуперации тепла из выбрасываемого
	воздуха REVO (вариант ССК-REVO)
CHW2	2-х рядный водяной нагреватель
CHWER	Рекуперация тепла из холодильников для пищевых продуктов
3WVM	Двухходовой модулирующий клапан
2WVM	Трехходовой модулирующий клапан
EH12	Термоэлектрические нагреватели мощностью 9 кВт (разм. 20.2)
EH14	Термоэлектрические нагреватели мощностью 12 кВт (разм. 20.2-28.2)
EH17	Термоэлектрические нагреватели мощностью 18 кВт (разм. 20.2-28.2-40.4)
EH20	Термоэлектрические нагреватели мощностью 24 кВт (разм. 28.2-40.4-56.4)
EH24	Термоэлектрические нагреватели мощностью 36 кВт (разм. 40.4-56.4)
EH28	Термоэлектрические нагреватели мощностью 48 кВт (разм. 56.4)
GC01X	Газовый конденсационный модуль нагрева с плавным регулированием 35 кВт (разм. 20.2-28.2)
GC08X	Газовый конденсационный модуль нагрева с плавным регулированием 44 кВт (разм. 20.2-28.2)
GC09X	Газовый конденсационный модуль нагрева с плавным регулированием 65 кВт (разм. 20.4÷30.4)
GC10X	Газовый конденсационный модуль нагрева с плавным регулированием 82 кВт (разм. 20.2-28.2-40.4)
GC11X	Газовый конденсационный модуль нагрева с плавным регулированием 100 кВт (разм. 28.2-40.4-56.4)
GC12X	Газовый конденсационный модуль нагрева с плавным регулированием 130 кВт (разм. 40.4-56.4)
GC13X	Газовый конденсационный модуль нагрева с плавным регулированием 160 кВт (разм. 56.4)
EWX	Модуль рекуперации энергии с помощью энтальпийного роторного
	колеса (версия СВК-G)
AMRX	Резиновые антивибрационные опоры
AMRMX	Резиновые антивибрационные опоры для блока и газового модуля
AMRUVX	
AMREWX	The second secon
	роторным рекуператором
RCX	Бордюр для установки на крыше
PGFC	Защитная решетка теплообменника
PGCCH	Защитные решетки от града
РСМО	Сэндвич-панели класса огнезащиты МО
CPHG	Теплообменник подогрева горячим газом
M3	Раздача воздуха вниз

Версия с распределением воздуха вверх

Заслонка внешнего воздуха с механизированным открытием и

Клапан свежего воздуха с ручным приводом (СВК версия)

Забор воздуха снизу

закрытием (вариант СВК)

SERMD Управляемый выходной воздушный клапан (опционально для СВК, стандартно для ССК и ССКР) **NSERG** Заслонка для выпуска воздуха самотеком: не требуется (вариант СВК-G) VENH Подающий вентилятор высокого напора **PVAR** Переменный расход воздуха **PCOSM** Постоянный расход воздуха на выходе **PVARDP** Переменный расход воздуха с использованием датчика давления, встроенного в машину **PVMV** Сигнал 4-20 мА для модуляции расхода подаваемого воздуха **PAQC** Зонд для контроля качества воздуха в связи с содержанием СО2 (варианты CBK, CBK-G, CCK-REVO) **PAGCV** S3онд для контроля качества воздуха в связи с содержанием CO_2 и летучих органических веществ (варианты CBK, CBK-G, CCK-REVO) **PPAQC** Управление внешними сигналами CO₂ (версии CBK, CBK-G, CCK-REVO) **F7** Высокоэффективный воздушный фильтр класса F7 F9 Высокоэффективный воздушный фильтр класса F9 **FIFD** Электронные фильтры типа iFD (ISO 16890 ePM1 90%) Дифференциальное реле перепада давления на загрязненных **PSAF** возлушных фильтрах HSE₃ Электродный пароувлажнитель - 3 кг/час (разм. 20.2-28.2) HSE5 Электродный пароувлажнитель - 5 кг/час (разм. 20.2-28.2) HSE8 Пароувлажнитель с погружными электродами 15 кг/ч (разм. 20.4÷24.4) HSE9 Пароувлажнитель с погружными электродами 15 кг/ч Разъем для управления внешним увлажнителем, напряжение сигнала 0-10 В ITFMP1 Исполнение для работы при низкой температуре наружного воздуха EXFLOWC Конфигурация для эксплуатации в помещениях с принудительной вытяжкой с переменным расходом и с блоком выброса (вариант ССК-REVO) **UVCX** Модуль ламп УФ-С с бактерицидным действием **CTT** Контроль температуры с помощью термостата **CSOND** Контроль температуры и влажности, датчики смонтированы на машине **MDMTX** Управление датчиками температуры окружающей среды **MDMTUX** Управление датчиками температуры и влажности окружающей среды Промышленный модуль ІоТ для реализации функций и сервисов в IOTX

> Измеритель хладопроизводительности и тепловой мощности Demand Limit Подготовка к отгрузке с помощью контейнера

сопряжении с облачными платформами

DESM

CONTA2

CHMET

DML

PTCO

Датчик дыма

Счетчик энергии

CLIVETPack³

Крышный кондиционер

CSRN-Y: Реверсивный тепловой насос Воздушное охлаждение Установка на крыше

Мощность от 190 до 380 kW

- ✓ Новый шаг в развитии идеи энергосбережения
- ✓ Рекуперация энергии с помощью энтальпийного роторного
- ✓ Повышенная эффективность низком фильтрации энергопотреблении вентиляторов
- ✓ Расширенный диапазон рабочих параметров (-15°C в режиме нагревания)
- ✓ Высокая надежность и энергоэффективность, обеспечиваемые двойным холодильным контуром
- √ Дистанционное и централизованное управление системой с помощью INTELLIAIR

Компания Clivet участвует в программе ECP для "крыш". Проверьте срок действия сертификата на сайте: www.eurovent-certification.com

функции и характеристики

энтальпийного роторного колеса

FREE-

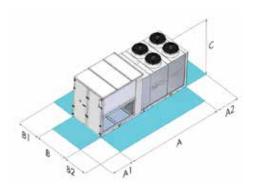
ECOBREEZE

Электронное управление вентилятором

клапан

Электронный расширительный

расход воздуха


расход

воздуха

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

Размер	▶ CS	RN-Y	60.4	70.4	80.4	90.4	100.4	120.4
А - Длина		mm	6300	6300	6300	8050	8050	8050
В - Ширина		mm	2300	2300	2300	2300	2300	2300
С - Высота		mm	2250	2250	2250	2250	2250	2250
A1		mm	1500	1500	1500	1500	1500	1500
A2		mm	1500	1500	1500	1500	1500	1500
B1		mm	1500	1500	1500	1500	1500	1500
B2		mm	1500	1500	1500	1500	1500	1500
CAK	Эксплуатационная масса	kg	2605	2643	2643	3536	3536	3750
CBK	Эксплуатационная масса	kg	2605	2643	2643	3536	3536	3750
CBK-G	Эксплуатационная масса	kg	2605	2643	2643	3536	3536	3750
CCK-REVO	Эксплуатационная масса	kg	2745	2783	2783	3728	3728	3942

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

САК Конфигурация с полной рециркуляцией (САК)

СВК Рециркуляцией и подачей свежего воздуха (СВК)

СВК-G Конструкция с одинарным вентиляционным блоком для рециркуляции, обновления и выброса воздуха

ССК-REVO Конструкция с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

CAK онфигурация с одним вентилятором для работы в режиме полной рециркуляции (Стандартно)

CBK Конфигурация с одним вентилятором для рециркуляции и забора свежего воздуха на смешение

CBK-G Конструкция с одинарным вентиляционным блоком для рециркуляции, обновления и выброса воздуха

ССК-REVOКонструкция с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO

технические характеристики

Размер	>>	CSRN-Y	60.4	70.4*	80.4*	90.4*	100.4*	120.4*
CCK-REVO ◆ Холодильная мощность	(1)	kW	209	234	265	296	324	378
CCK-REVO Явная холодильная мощность	(1)	kW	159	179	207	226	247	282
CCK-REVO Потребление компрессоров	(1)	kW	47,9	54,0	64,7	65,8	73,6	95,1
CCK-REVO ◆ Холодильная мощность (EN 14511:2022)	(9)	kW	191,0	213,9	240,7	270,3	296,0	344,0
CCK-REVO EER (EN 14511:2022)	(9)	-	3,40	3,40	3,20	3,45	3,42	3,14
ССК-REVO ◆ Тепловая мощность	(2)	kW	199	220	248	284	309	363
ССК-REVO Потребление компрессоров	(2)	kW	43,5	48,7	54,6	60,0	67,7	87,6
ССК-REVO ◆ Тепловая мощность (EN 14511:2022)	(10)	kW	191,8	213,5	242,7	274,0	298,8	352,5
CCK-REVO COP (EN 14511:2022)	(10)	-	3,44	3,44	3,46	3,50	3,43	3,19
CCK-REVO Холодильные контуры		Nr	2	2	2	2	2	2
CCK-REVO Кол-во компрессоров		Nr	4	4	4	4	4	4
CCK-REVO Тип компрессоров	(3)	-	SCROLL	SCROLL	SCROLL	SCROLL	SCROLL	SCROLL
ССК-REVO Расход приточного воздуха		m³/h	33000	37000	44000	49000	53000	58000
CCK-REVO Тип приточного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC
CCK-REVO Количество приточных вентиляторов		Nr	4	4	4	6	6	6
ССК-REVO Макс. статический напор приточного вентилятора	(5)	Pa	870	760	580	860	810	740
CCK-REVO Тип вытяжного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC
CCK-REVO Количество вытяжных вентиляторов	(6)	Nr	2	2	2	2	2	2
CCK-REVO Вентиляторы внешней секции	(4)	-	AX/AC	AX/AC	AX/AC	AX/AC	AX/AC	AX/AC
CCK-REVO Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3^/50
Уровень звуковой мощности снаружи	(7)	dB(A)	92	94	97	95	96	98
Директива ErP (Energy Related Products)								
SEER - СРЕДНИЙ климат	(8)	-	4,74	4,69	4,37	4,44	4,31	4,16
ns,c	(8)	%	186,6	184,7	171,7	174,7	169,5	163,5
SCOP - СРЕДНИЙ климат	(8)	-	3,41	3,47	3,42	3,42	3,39	3,37
Лѕн	(8)	%	133,5	135,8	133,9	133,9	132,5	132,0

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

Значения эксплуатационных характеристик указаны для режима работы с объемом забора Значения эксплуатационных характеристик указаны для режима работы с объемом забора внешнего воздуха и выброса 30% и с использованием системы термодинамической рекуперации REVO (ССК-REVO) (1) Температура окружающей среды 27°С сух. терм. / 19°С влаж. терм. Температур воздуха, поступающего во внешний обменник, 35°С сух. терм. / 24°С влаж. терм (2) Температура окружающей среды 20°С сух. терм. / 12°С влаж. терм. Температур воздуха, поступающего во внешний обменник, 7°С сух. терм. / 6°С влаж. терм (3) SCROLL = Спиральный компрессор

(4) RAD = радиальный вентилятор; АХ = осевой вентилятор; ЕС = электронно-коммутируемый; АС = переменный ток

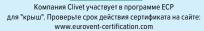
- (5) Внешнее статическое давление на сеть для преодоления сопротивления подающих и забирающих воздуховодов
- (6) Только для конструкции с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO (CCK-REVO)
- (7) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013
- (8) Данные рассчитаны в соответствии с EN 14825:2022
- (9) Мощность при полной рециркуляции в соответствии с EN 14511:2022, температура воздуха внутри помещения 27°C C.T./19°C B.T.; температура наружного воздуха 35°C; EER в соответствии с EN 14511:2022
- (10) Производительность при полной рециркуляции в соответствии с EN 14511:2022, температура воздуха внутри помещения 20°С; температура наружного воздуха 7°С С.Т./6°С В.Т.; СОР в соответствии с EN 14511:2022

модели, отмеченные данным знаком, не сертифицированы Eurovent (не входят в область

аксессуары

	/ /		
FC	Термическое ECTECTBEHHOE ОХЛАЖДЕНИЕ (варианты CBK-G, CCK-REVO)	PVAR	Переменный расход воздуха
FCE	энтальпическое ECTECTBEHHOE ОХЛАЖДЕНИЕ (варианты CBK-G,	PCOSM PVARDP	Постоянный расход воздуха на выходе
FCE	отпальническое естественное охлаждение (варианы сък-о, ССК-REVO)	PVARDP	Переменный расход воздуха с использованием датчика давления, встроенного в машину
REVO	Система термодинамической рекуперации тепла из выбрасываемого	SPVAR	Сигнал 0-10 В для регулирования воздушного потока
CREFB	воздуха REVO (вариант ССК-REVO) Устройство для снижения потребляемой мощности вентиляторов	PAQC	Зонд для контроля качества воздуха в связи с содержанием ${\rm CO}_2$ (варианты CBK, CBK-G, CCK-REVO)
	ECOBREEZE	PAQCV	S3онд для контроля качества воздуха в связи с содержанием CO ₂ и
CHW2	2-х рядный водяной нагреватель		летучих органических веществ (варианты CBK, CBK-G, CCK-REVO)
CHWER	Рекуперация тепла из холодильников для пищевых продуктов	PAQC2	Двойной датчик качества воздуха для проверки уровня СО, (версии
3WVM	Двухходовой модулирующий клапан		CBK, CBK-G, CCK-REVO)
2WVM	Трехходовой модулирующий клапан	PAQCV2	Двойной датчик качества воздуха для проверки содержания CO ₂ и
EH20	24 кВт электронагреватели		VOC (версии CBK, CBK-G, CCK-REVO)
EH24	Электрический нагреватель 36 кВт	PPAQC	Управление внешним сигналом CO ₂
EH28	Электрический нагреватель мощностью 48 кВт	F7	Высокоэффективный воздушный фильтр класса F7
GC10X	Конденсационный газовый отопительный модуль с модуляционным	F9	Высокоэффективный воздушный фильтр класса F9
	управлением 82 кВт (размеры 60,4÷80,4)	FIFD	Электронные фильтры типа iFD (ISO 16890 ePM1 90%)
GC11X	Конденсационный газовый отопительный модуль с модуляционным управлением 100 кВт (размеры 60.4÷80.4)	PSAF	Дифференциальное реле перепада давления на загрязненных воздушных фильтрах
GC12X	Конденсационный газовый отопительный модуль с модуляционным	HSE8	Пароувлажнитель с погружными электродами 15 кг/ч (разм. 20.4÷24.4)
	управлением 130 кВт (размеры 90.4÷120.4)	HSE9	Пароувлажнитель с погружными электродами 15 кг/ч
GC13X	Конденсационный газовый отопительный модуль с модуляционным управлением 164 kW	PUE	Разъем для управления внешним увлажнителем, напряжение сигнала 0-10 B
GC06X	Конденсационный газовый отопительный модуль с модуляционным	LTEMP1	Исполнение для работы при низкой температуре наружного воздуха
	управлением 200 kW	EXFLOWO	Конфигурация для эксплуатации в помещениях с принудительной
GC07X	Конденсационный газовый отопительный модуль с модуляционным управлением 300 кВт (размеры 90.4÷120.4)		вытяжкой с переменным расходом и с блоком выброса (вариант ССК- REVO)
EWX	Энтальпийный роторный рекуператор энергии (версия СВК-G)	UVCX	Модуль ламп УФ-С с бактерицидным действием
AMRX	Резиновые антивибрационные опоры	BRCI	Наклонный сливной поддон
AMRMX	Резиновые антивибрационные опоры для блока и газового модуля	LON	Последовательный порт TP/FT с протоколом LonWorks
AMRUVX	Резиновые антивибрационные опоры для основного блока и модуля	BACIP	BACnet-IP serial communication module
	ламп УФ-С	BACMSTP	BACnet-MSTP
AMREWX	Резиновые антивибрационные крепления для блока с энтальпийным	SFSTR	Устройство для снижения пускового тока (разм. 70.4÷160.4)
	роторным рекуператором	NCRC	Пульт дистанционного управления с пользовательским интерфейсом:
RCX	Бордюр для установки на крыше		не требуется
PGFC	Защитная решетка теплообменника	CSOND	Контроль температуры и влажности, датчики смонтированы на
PGCCH	Защитные решетки от града		машине
PCM0	Сэндвич-панели класса огнезащиты МО	MDMTX	Управление датчиками температуры окружающей среды
CPHG	Теплообменник подогрева горячим газом		Управление датчиками температуры и влажности окружающей среды
M3	Подача воздуха вниз	MDMADX	Управление передовыми устройствами мониторинга окружающей
M5	Подача воздуха наверх		среды
R3	Обратное всасывание воздуха снизу	IOTX	Промышленный модуль ІоТ для реализации функций и сервисов в
SER	Клапан свежего воздуха с ручным приводом (СВК версия)		сопряжении с облачными платформами
SERM	Заслонка внешнего воздуха с механизированным открытием и	SIX	Сервисный интерфейс(кабаль 1.5 метра)
SFCM	закрытием (вариант СВК)	PFCC	Конденсаторы для увеличения коэффициента мощности (cosfi>0,95)
3FUN	Плавное регулирование заслонкой СВОБОДНОГО ОХЛАЖДЕНИЯ (стандартная версия ССК, ССКР	DESM	Датчик дыма
NSERG	Заслонка для выпуска воздуха самотеком: не требуется (вариант	CONTA2	1
HJERU	сВК-G)	CHMET	Измеритель хладопроизводительности и тепловой мощности
VENH	Подающий вентилятор высокого напора	PTCO	Подготовка к отгрузке с помощью контейнера
V E INT	подающим вентилитор высокого напора		

Принадлежности, код которых заканчивается на "Х", поставляются отдельно


Для проверки совместимости различных опций обратитесь к техническому каталогу или нашему вэб-сайту к разделу "Системы и Продукты"

NEW PRODUCT

CLIVETPack3i

Крышный кондиционер

CSNX-iY: Реверсивный тепловой насос Воздушное охлаждение Установка на крыше

Мощность от 40 до 160 kW

- Рассчитан на применение в помещениях, где наблюдается нехватка свободного пространства
- ✓ Хладагент R32
- √ Full inverter
- ✓ Новый шаг в развитии идеи энергосбережения
- Эволюция концепции рекуперации энергии
- √ Расширенный диапазон рабочих параметров (-15°C в режиме нагревания)
- ✓ Высокая надежность и энергоэффективность, обеспечиваемые двойным холодильным контуром
- √ Дистанционное и централизованное управление системой с помощью INTELLIAIR

функции и характеристики

охлаждение

термодинамической COOLING

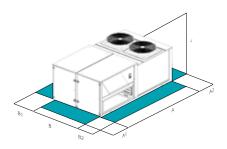
рекуперации REVO

Full

ECOBREEZE

Электронный управление расширительный вентилятором клапан

расход воздуха


воздуха

INTELLIAIR

Размеры и зоны обслуживания

PA3MEP >>	CSNX-iY	20.2	28.2	40.4
А - Длина	mm	2650	3550	3970
В - Ширина	mm	2300	2300	2300
С - Высота	mm	1480	1510	1910
A1	mm	1500	1500	2000
A2	mm	1500	1500	1500
B1	mm	1500	1500	1500
B2	mm	1500	1500	1500
CCK-REVO Эксплуатационная ма	acca kg	968	1119	1744

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ССК-REVO Конструкция с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

ССК-REVO Конструкция с двойным вентиляционным блоком с притоком свежего воздуха и системой термодинамической рекуперации REVO

технические характеристики

Размер	▶▶ (CSNX-iY	20.2	28.2	40.4
CCK-REVO ◆ Холодильная мощность	(1)	kW	49,7	91,9	146,0
CCK-REVO Явная холодильная мощность	(1)	kW	35,7	65,1	104,0
CCK-REVO Потребление компрессоров	(1)	kW	10,8	23,0	42,4
CCK-REVO ◆ Холодильная мощность (EN 14511:2022)	(8)	kW	40,1	74,9	119,2
CCK-REVO EER (EN 14511:2022)	(8)	-	3,10	2,71	2,52
CCK-REVO ◆ Тепловая мощность	(2)	kW	45,4	79,2	130,0
CCK-REVO Потребление компрессоров	(2)	kW	9,2	16,0	29,0
CCK-REVO ◆ Тепловая мощность (EN 14511:2022)	(9)	kW	41,8	75,2	120,6
CCK-REVO COP (EN 14511:2022)	(9)	-	3,23	3,07	3,00
CCK-REVO Холодильные контуры		Nr	2	2	2
ССК-REVO Кол-во компрессоров		Nr	2	2	4
ССК-REVO Тип компрессоров	(3)	-	ROT	SCROLL	ROT
ССК-REVO Расход приточного воздуха		m³/h	6000	10500	19000
CCK-REVO Тип приточного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC
CCK-REVO Количество приточных вентиляторов		Nr	1	1	2
ССК-REVO Макс. статический напор приточного вентилятора	(5)	Pa	690	440	470
CCK-REVO Тип вытяжного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC
CCK-REVO Количество вытяжных вентиляторов		Nr	1	1	2
CCK-REVO Вентиляторы внешней секции	(4)	-	AX/EC	AX/EC	AX/EC
CCK-REVO Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50
Уровень звуковой мощности снаружи	(6)	dB(A)	83	89	88
Директива ErP (Energy Related Products)					
SEER - СРЕДНИЙ климат	(7)	-	4,69	4,95	4,57
$\eta_{s,c}$	(7)	%	184,6	195,0	179,8
SCOP - СРЕДНИЙ климат	(7)	-	3,53	3,95	3,75
ης,н	(7)	%	138,2	155,0	146,6

PVAR

PTCO

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21. Значения эксплуатационных характеристик указаны для режима работы с объемом забора внешнего воздуха и выброса 30% и с использованием системы термодинамической рекуперации REVO (CCK-REVO)

(1) Температура окружающей среды 27°С сух. терм. / 19°С влаж. терм. Температур воздуха,

поступающего во внешний обменник, 35°C сух. терм. / 24°C влаж. терм (2) Температура окружающей среды 20°C сух. терм. / 12°C влаж. терм. Температур воздуха,

поступающего во внешний обменник, 7°С сух. терм. / 6°С влаж. терм (3) ROT = Роторный компрессор; SCROLL = Спиральный компрессор

(4) RAD = радиальный вентилятор; AX = осевой вентилятор; EC = электронно-коммутируемь

(5) Внешнее статическое давление на сеть для преодоления сопротивления подающих и

(6) Уровни звукового давления относятся к устройствам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартных условиях, определенных в соответствующих нормативных документах: EU 2016/2281, UE 813/2013, UE 811/2013

Переменный расход воздуха

(7) Данные рассчитаны в соответствии с EN 14825:2022(8) Мощность при полной рециркуляции в соответствии с EN 14511-2022, температура воздуха внутри (о) модноств три полном редержувания с соответствии с 2.N 1-93-10-22, температура воздуха взутури помещения 27°С с.Т./9°С В.Т.; температура наружного воздуха 35°С; ЕЕЯ в соответствии с N 14511-2022 (9) Производительность при полной рециркуляции в соответствии с EN 14511-2022, температура воздуха внутри помещения 20°С; температура наружного воздуха 7°С С.Т./6°С В.Т.; СОР в соответствии с EN 14511-2022

аксессуары

VENH

	<u> </u>
FC	Термическое ЕСТЕСТВЕННОЕ ОХЛАЖДЕНИЕ (стандарт)
FCE	Свободное-охлаждение в соответствии с наружной энтальпией
REVO	REVO термодинамическая рекуперация энергии вытяжного воздуха (стандарт)
CHW2	2-х рядный водяной нагреватель
3WVM	Двухходовой модулирующий клапан
2WVM	Трехходовой модулирующий клапан
EH10	Электронагреватели 6 кВт (размер 20.2)
EH12	Электронагреватели 9 кВт (размер 20.2)
EH15	Электронагреватели 13,5 кВт (размер 20.2-28.2)
EH17	Электронагреватели 18 кВт (размер 28.2-40.4)
EH20	Электронагреватели 24 кВт (размер 28.2-40.4)
EH24	Электронагреватели 36 кВт (размер 40.4)
GC01X	Газовый конденсационный модуль нагрева с плавным регулированием 35 кВт (разм. 20.2-28.2)
GC08X	Газовый конденсационный модуль нагрева с плавным регулированием 44 кВт (разм. 20.2-28.2)
GC09X	Конденсационный газовый отопительный модуль с модуляционным управлением 65 кВт (размер 28.2-40.4)
GC10X	Конденсационный газовый отопительный модуль с модуляционным управлением 82 кВт (размер 28.2-40.4)
GC11X	Конденсационный газовый отопительный модуль с модуляционным управлением 100 кВт (размер 40.4)
GC12X	Конденсационный газовый отопительный модуль с модуляционным управлением 130 кВт (размер 40.4)
AMRX	Резиновые антивибрационные опоры
AMRMX	Резиновые антивибрационные опоры для блока и газового модуля
AMRUVX	Резиновые антивибрационные опоры для основного блока и модуля ламп УФ-С
RCX	Бордюр для установки на крыше
PGFC	Защитная решетка теплообменника
PGCCH	Защитные решетки от града
PCM0	Сэндвич-панели класса огнезащиты МО
CPHG	Теплообменник подогрева горячим газом
M3	Раздача воздуха вниз
M5	Версия с распределением воздуха вверх
ML	Подача воздуха с боковой стороны
R3	Забор воздуха снизу
SERMD	Модулирующая моторизованная заслонка наружного воздуха (стандарт)
A CENTRAL	

FVAIL	переменный расход воздуха
PCOSM	Постоянный расход воздуха на выходе
PVARDP	Переменный расход воздуха с использованием датчика давления,
	встроенного в машину
PVMV	Сигнал 4-20 мА для модуляции расхода подаваемого воздуха
PAQC	Датчик качества воздуха для регулирования СО2 ч/м
PAQCV	Датчик качества воздуха для регулирования CO2 и ЛОС ч/м
PAQC2	DДвойной датчик качества воздуха для проверки уровня CO ₂
PAQCV2	Двойной датчик качества воздуха для проверки содержания \tilde{CCO}_2 и VOC
PPAQC	Управление внешним сигналом СО2
F7	Высокоэффективный воздушный фильтр класса F7
F9	Высокоэффективный воздушный фильтр класса F9
FIFD	Электронные фильтры типа iFD (ISO 16890 ePM1 90%)
PSAF	Дифференциальное реле перепада давления на загрязненных
	воздушных фильтрах
HSE3	3 кг/ч паровой увлажнитель с погруженными электродами (размер 20.2)
HSE5	5 кг/ч паровой увлажнитель с погруженными электродами (размер 20.2-28.2)
HSE8	Пароувлажнитель с погружными электродами 15 кг/ч (разм. 20.4÷24.4)
HSE9	15 кг/ч паровой увлажнитель с погружными электродами (размер 28,2-40,4)
PUE	Разъем для управления внешним увлажнителем, напряжение сигнала 0-10 В
LTEMP1	Исполнение для работы при низкой температуре наружного воздуха
EXFLOWC	Применяется в помещениях с принудительной вытяжкой воздуха с
	переменным расходом и вытяжным сечением
UVCX	Модуль ламп УФ-С с бактерицидным действием
CMSC13X	Последовательный коммуникационный модуль для Modbus TCP/IP,
	BACnet IP, BACnet MSTP контролера
CTT	Контроль температуры с помощью термостата
CSOND	Контроль температуры и влажности, датчики смонтированы на машине
MDMTX	Управление датчиками температуры окружающей среды
	Управление датчиками температуры и влажности окружающей среды
	Управление передовыми устройствами мониторинга окружающей среды
IOTX	Промышленный модуль IoT для реализации функций и сервисов в сопряжении с облачными платформами
DESM	Датчик дыма
CONTA2	Счетчик энергии
CHMET	Измеритель хладопроизводительности и тепловой мощности
DML	Demand Limit

Подготовка к отгрузке с помощью контейнера

CLIVETPack² FFA

Крышный кондиционер

CSRN-XHE2 FFA: реверсивный тепловой насос Воздушное охлаждение Установка на крыше

Мощность от 40 до 90 kW

- ✓ Рассчитан на эксплуатацию в помещениях, где используется исключительно внешний воздух
- ✓ Отсутствие загрязнения между расходом приточного и вытяжного воздуха
- Повышенная энергоэффективность при частичных нагрузках
- ✓ Умное управление процессами размораживания и естественного охлаждения
- ✓ Повышенная эффективность фильтрации при низком энергопотреблении вентиляторов
- ✓ Термодинамическая рекуперация
- ✓ Совместимость с основными протоколами связи (Modbus, Bacnet и Lonworks)
- ✓ Широчайшие возможности настройки для любых условий эксплуатации
- ✓ Возможность сопряжения с вытяжными системами сторонних производителей
- ✓ Простота установки, все компоненты размещаются внутри машины
- ✓ Дистанционное и централизованное управление системой с помощью INTELLIAIR

функции и характеристики

насос

Воздушное

охлаждение

Спиральный

замораживания

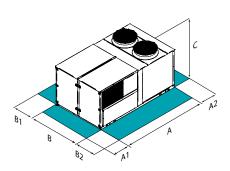
рекуперация

управление

вентилятором

расширительный

клапан


расход

воздуха

INTELLIAIR

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3ME	P CSRN-XHE2	-FFA	12.2	16.2	20.4	22.4	24.4
CBFFA	А - Длина	mm	2090	2090	3110	3110	3110
CBFFA	В - Ширина	mm	2300	2300	2300	2300	2300
CBFFA	С - Высота	mm	1560	1560	1650	1650	1650
CBFFA	A1	mm	1500	1500	1500	1500	1500
CBFFA	A2	mm	1500	1500	1500	1500	1500
CBFFA	B1	mm	1500	1500	1500	1500	1500
CBFFA	B2	mm	1500	1500	1500	1500	1500
CBFFA	Эксплуатационная масса	kg	1273	1297	1358	1393	1427
CCFFA	Эксплуатационная масса	kg	1401	1425	1560	1595	1629

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании

CBFFA Конфигурация для свежего воздуха ССFFA Конфигурация для свежего воздуха с выходом

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

CBFFA Конфигурация для свежего воздуха (Стандартно) **CCFFA** Configuración para impulsión de aire exterior con extracción y expulsión

технические характеристики

Размер	•	CSRN-XI	HE2-FFA	12.2	16.2	20.4	22.4	24.4
CBFFA	 Холодильная мощность 	(1)	kW	39,8	49,5	76,1	83,4	90,4
CBFFA	Явная холодильная мощность	(1)	kW	21,5	27,8	38,3	43,3	48,0
CBFFA	Потребление компрессоров	(1)	kW	9,4	12,9	20,0	21,7	23,3
CBFFA	EER	(1)	-	4,23	3,84	3,81	3,84	3,88
CBFFA	 Тепловая мощность 	(2)	kW	39,6	50,0	73,2	81,4	89,5
CBFFA	Потребление компрессоров	(2)	kW	9,9	11,9	17,2	18,2	20,7
CBFFA	COP	(2)	-	4,00	4,20	4,26	4,47	4,32
CBFFA	Холодильные контуры		Nr	2	2	2	2	2
CBFFA	Кол-во компрессоров		Nr	2	2	4	4	4
CBFFA	Тип компрессоров	(3)	-	SCROLL	SCROLL	SCROLL	SCROLL	SCROLL
CBFFA	Расход приточного воздуха		m³/h	3400	4500	6000	7000	8000
CBFFA	Тип приточного вентилятора	(4)	-	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC
CBFFA	Количество приточных вентиляторов		Nr	1	1	1	1	1
CBFFA	Макс. статический напор приточного вентилят	opa (5)	Pa	675	470	775	730	650
CBFFA	Вентиляторы внешней секции	(4)	-	AX/AC	AX/AC	AX/AC	AX/AC	AX/AC
CBFFA	Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Уровень зв	уковой мощности снаружи	(6)	dB(A)	83	85	84	85	87

CBFFA Конфигурация для свежего воздуха

аксессуары

RE1	Система термодинаммической рекуперации (конструктивная конфигурация ССFFA)	GC10X	Конденсационный газовый отопительный модуль с модуляционным управлением 82 кВт (размеры 20.4÷24.4)
М3	Раздача воздуха вниз	LTEMP1	Управлением 62 квт (размеры 20.4-24.4) Исполнение для работы при низкой температуре наружного воздуха
M5	Раздача воздуха вниз Версия с распределением воздуха вверх	PGFC	Защитная решетка теплообменника
R3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PGCCH	
PCOSM	Забор воздуха снизу Постоянный расход воздуха на выходе	CPHG	Защитные решетки от града
		HSE5	Теплообменник подогрева горячим газом
PCOSME	Постоянный расход воздуха на притоке и вытяжке (конструктивная		Электродный паровой увлажнитель 8 кг/ч
00550	конфигурация CCFFA)	HSE8	Пароувлажнитель с погружными электродами 15 кг/ч (разм. 20.4÷24.4)
CREFB	Устройство для снижения потребляемой мощности вентиляторов	HSE9	Электродный пароувлажнитель от 5 кг/час (разм. 12.2÷16.2)
VENH	ECOBREEZE	MHP	Манометры высокого и низкого давления
	Вентиляторы с повышенным напором	CMSC9	Модуль для последовательного соединения с системой
F7	Высокоэффективный воздушный фильтр класса F7		централизованного управления по протоколу Modbus
F9	Высокоэффективный воздушный фильтр класса F9	CMSC10	Модуль последовательной связи с системой диспетчеризации на базе
FIFD	Электронные фильтры типа iFD (ISO 16890 ePM1 90%)		протокола LonWorks
PSAF	Дифференциальное реле перепада давления на загрязненных	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
	воздушных фильтрах	CTERM	Дистанционная клавиатура для управления температурой и
EH12	18 кВт электронагреватели		влажностью
EH15	13,5 кВт электрические нагреватели (размеры 12.2÷16.2)	PM	Резиновые антивибрационные опоры
EH17	18 кВт электрические нагреватели (размеры 20.4÷24.4)	PFCC	Конденсаторы для увеличения коэффициента мощности (cosfi>0,95)
EH22	12 кВт электронагреватели (разм. 12.2÷16.2)	SFSTC	Устройство для плавного пуска компрессора
CHW2	2-х рядный водяной нагреватель	PTAAX	Дистанционный датчик температуры воздуха в помещении
3WVM	Регулирующий 3-х ходовый клапан	PTUAX	Дистанционный датчик температуры и влажности воздуха в
2WVM	2-х ходовый клапан		помещении
GC01X	Модуль конденсационного газового нагрева с управлением 35 кВт	IOTX	Промышленный модуль ІоТ для реализации функций и сервисов в
GCUIX	(разм. 12.2÷16.2)	DOMO	сопряжении с облачными платформами
CCOOV	,	РСМО	Сэндвич-панели класса огнезащиты МО
GC08X	Газовый конденсационный модуль нагрева с плавным	PTCO	Подготовка к отгрузке с помощью контейнера
00001	регулированием 44 кВт (разм. 12.2÷16.2)	AMRX	Резиновые антивибрационные опоры
GC09X	Конденсационный газовый отопительный модуль с модуляционным	AMRMX	Резиновые антивибрационные опоры для блока и газового модуля
	управлением 65 кВт	RCX	Бордюр для установки на крыше

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Для проверки совместимости различных опций обратитесь к техническому каталогу или нашему вэб-сайту к разделу "Системы и Продукты"

Los rendimientos se refieren al funcionamiento con un 80% de aire exterior y expulsado (1) Наружный воздух 27°C С.Т./19°C М.Т. Температура наружного воздуха: 35°C С.Т./ 24°C М.Т. ЕЕК относится только к компрессорам

⁽²⁾ Температура внутреннего воздуха 20°С С.Т. Наружная температура 7°С С.Т./6°С М.Т. СОР (2) температуры внутреннего воздуха 20 с с.т. паружная температура 7 с с.т. с с относится только к компрессорам
 (3) SCROLL = Спиральный компрессор
 (4) RAD = радиальный вентилятор; АХ = осевой вентилятор; ЕС = электронно-коммутируемый;

АС = переменный ток

⁽⁵⁾ Свободное статическое давление для преодоления сопротивления приточной сети(6) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальном стандарте.

Коммерческий сектор

Fresh Large EVO

Расход воздуха Мощность (A35) 350 ÷ 2500 m³/h 2 ÷ 8 kW

Продукты

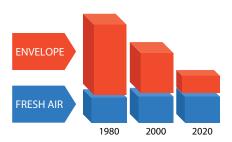
Термодинамическая рекуперация

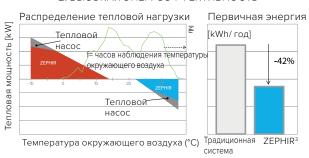
Система электронной фильтрации iFD

Free Cooling

Активное осушение

ЕС вентиляторы




Переменный расход

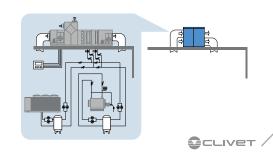
1. ЦЕНТРАЛЬНОЕ ОБНОВЛЕНИЕ ВОЗДУХА

2. ВЫСОКАЯ ЭНЕРГОЭФФЕКТИВНОСТЬ

Коммерческий сектор

ZEPHIR³

1000 ÷ 14000 m³/h 10 ÷ 96 kW



3.99% ОЧИСТКА ВОЗДУХА

4. УПРОЩЕНИЕ СИСТЕМЫ

PRIMARY AIR System

Элементы системы

СЕРИЯ	РАЗМЕР	ОТ	до наименован	НИЕ	CTP.
Моноблочный кондиционер, работа с	о 100% свежего	воздуха	с секциями притока и в	ытяжки и термодинамичекой	рекуперацией
CiSDN-Y1S	Size 1	Size 3	Fresh Large EVO	New	118
CPAN-XHE3	Size 1	Size 6	ZEPHIR ³		120

NEW PRODUCT

Fresh Large EVO

Моноблочный кондиционер для обработки воздуха

С возвратым/вытяжным и термодинамической рекуперацией тепла

Реверсивный тепловой насос

Внутренняя установка

Расход воздуха от 350 до 2500 м³/ч

- ✓ Хладагент R32
- ✓ Full inverter
- ✓ Расширенный рабочий предел (до -20°С в режиме нагрева)
- ✓ Предусмотрена дополнительная емкость для работы в режиме кондиционирования
- Эффективная рекуперация энергии вытяжного воздуха и низкое потребление электроэнергии благодаря активной термодинамической рекуперации
- ✓ Усиленная фильтрация воздуха (электронные фильтры iFD в качестве опции)
- ✓ Отсутствие взаимного перетока между приточным и вытяжным воздухом
- ✓ Умный Freecooling и качество воздуха внутри помещений
- ✓ Все компоненты для подачи свежего воздуха уже встроенный в конструктив установки, что позволяет максимально оптимизировать конструкцию оборудования.
- ✓ Совместимость с VRF и системами мониторинга Clivet (Control4 NRG, Clivet Eye, INTELLIAIR)
- ✓ ЕРР (вспененный полипропилен) обеспечивает максимальный акустический комфорт и теплоизоляцию

функции и характеристики

расход

воздуха

Тепловой насос

Воздушное охлаждение

установка

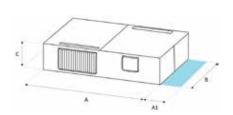
R-32

FRFF. COOLING

термодинамическая управление вентилятором

расширительный клапан

расход



Мониторинг Clivet Eye

Размеры и зоны обслуживания

PA3MEP ►► CISDN-Y	EF1S	Size 1	Size 2	Size 3
А - Длина	mm	1700	1700	1700
В - Ширина	mm	1250	1250	1250
С - Высота	mm	300	400	550
A1	mm	500	500	500
Эксплуатационная масса	kg	95	115	125

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

УСТАНОВКА:

M5E

Внутренняя установка (Стандартно)

FDOWN Доступ к фильтру в нижней части секции (стандарт)

FTOP Доступ к фильтру в верхней части секции

ВОЗДУШНЫЙ КОНТУР

M5S М5 фильтры со стороны приточной части (ISO 16890 ePM1 50%)

М5 фильтры со стороны вытяжной части (ISO 16890 ePM1 50%)

(стандарт)

ПОДКЛЮЧЕНИЕ:

CMSC9 Модуль последовательной связи Modbus (стандарт)

VRFG VRF-шлюз (стандартный)

ГИДРАВЛИЧЕСКИЙ КОНТУР:

CDP Дренажная помпа (стандарт)

технические характеристики

Размер ►► CiSI	DN-Y EF 1 S	Size 1	Size 2	Size 3
Номинальный расход воздуха				
Номинальный расход воздуха	m³/h	500	1000	2000
Максимальное внешнее статическое	Pa	250	300	280
давление (приток)		230		200
Максимальное внешнее статическое	Pa	250	300	280
давление (вытяжка)		230	300	200
Охлаждение				
Общая холодопроизводительность	(1)kW	2,0	3,9	7,7
Общая явная производительность	(1)kW	1,9	3,8	7,5
Полная потребляемая мощность блока	(1)kW	0,4	0,8	1,6
EER	(1) -	4,64	4,71	4,79
Нагрев				
Тепловая мощность	(2) kW	2,2	4,5	8,7
Полная потребляемая мощность блока	(2) kW	0,4	0,9	1,8
COP	(2) -	5,21	4,96	4,73
Холодильные контуры	Nr	1	1	1
Кол-во компрессоров	Nr	1	1	1
Тип компрессоров	(3) -	ROT	ROT	ROT
Тип приточного вентилятора	(4) -	EC	EC	EC
Количество приточных вентиляторов	Nr	1	1	1
Тип вытяжного вентилятора	(4) -	EC	EC	EC
Количество вытяжных вентиляторов	Nr	1	1	1
Номинальное напряжение	V	230/1~/50	230/1~/50	230/1~/50
Минимальный поток воздуха	m³/h	350	700	1400
Максимальный поток воздуха	m³/h	800	1500	2500

Erp (Energy Related Products) Европейская директива, которая включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21, не

сообщает об этой категории Продуктов. (1) Окружающий воздух при 27°C C.T./19°C В.Т.; температура воздуха на входе во внешний теплообменник 35°C C.T./24°C В.Т.; температура приточного воздуха: 24°C С.Т.

(2) Окружающий воздух при 20° С C.T./ 12° С В.Т.; температура воздуха на входе во внешний теплообменник 7° С C.T./ 6° С В.Т.; температура приточного воздуха: 20° С С.Т.

(3) ROT = роторный компрессор (4) ЕС = электронно-коммутируемый

ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ

аксессуары

PVARC PVARCV Регулирование потока воздуха на притоке и вытяжке по датчику CO₂ Регулирование потока воздуха на притоке и вытяжке по датчикам

FIFD

Электронные фильтры типа iFD (ISO 16890 ePM1 90%)

IOTX

Промышленный модуль ІоТ для реализации функций и сервисов в

сопряжении с облачными платформами

PCOSME2 Двойная уставка воздушного потока (стандарт)

PUE Управление сторонним увлажнителем

ASOFX Антивибрационные опоры

APAVX Комплект антивибрационных опор для установки на полу

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Для проверки совместимости различных опций обратитесь к техническому каталогу или нашему вэб-сайту к разделу "Системы и Продукты"

ZEPHIR³

Моноблочный кондиционер для обработки воздуха

С возвратым/вытяжным и термодинамической рекуперацией тепла

Тепловой насос

Наружная или внутренняя установка

Расход воздуха от 278 до 3900 л/с (от 1000 до 14000 m³/h)

- Инверторные компрессоры
- √ Приток воздуха с постоянными температурой и влажностью как в режиме нагрева, так и в режиме охлаждения
- ✓ Предусмотрена дополнительная емкость для работы в режиме кондиционирования
- √ Эффективная рекуперация энергии из вытяжного воздуха и низкое энергопотребление вентилятора благодаря активной термодинамической рекуперации
- Усиленная фильтрация воздуха (электронный фильтр iFD в стандартной комплектации)
- Отсутствие взаимного перетока между приточным и вытяжным воздухом
- Управляемый вторичный нагрев и бесплатное тепло от конденсатора.
- ✓ мное управление процессом естественного охлаждения и качеством окружающего воздуха
- ✓ Простота составления монтажной схемы благодаря размещению всех деталей и узлов внутри машины
- ✓ Дистанционное и централизованное управление системой с помощью INTELLIAIR

функции и характеристики

насос

охлаждение

установка

R-410A

Спиральный

2÷Size 6)

Роторный

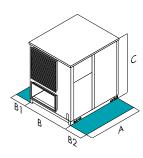
(разм. Size 1)

COOLING термодинамическая управление

расширительный

DC

объем



INTELLIAIR объем воздуха

Размеры и зоны обслуживания

установка

PA3MEP >	► CPAN-XHE3	Size 1	Size 2	Size 3	Size 4	Size 5	Size 6
А - Длина	mm	1895	1895	2465	2465	2465	2465
В - Ширина	mm	950	950	1735	1735	2025	2330
С - Высота	mm	1025	1625	1810	2260	2260	2260
B1	mm	700	700	700	700	700	700
B2	mm	1200	1200	1200	1200	1200	1200
Эксплуатационная	і масса kg	320	450	1070	1285	1450	1670

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

технические характеристики

(разм. Size 1) Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕКс Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное иопрессоров Сорс Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Тепловая мощность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Тепловая мощность Потребление компрессоров Дополнительная доступная мощность ЕЕКС Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое	(1) (1) (1) (1) (2) (2) (2) (2) (3) (3) (3) (3) (3)	l/s m³/h Pa Pa kW kW	361 1300 630 630 10,6 2,7 2,9 4,57 5,9 0,7 8,38 361 1300 630	611 2200 630 630 17,5 4,2 4,9 4,41 10,0 1,4 7,45	1278 4600 630 38,7 10,9 11,1 4,47 21,0 2,5 8,28 1278 4600 630	2000 7200 600 630 58,4 14,9 15,7 4,67 32,9 4,2 7,80 2000 7200 600	2638 9500 420 540 79 21,3 20,4 4,91 43,4 5,8 7,55	3333 12000 630 630 95,9 22,9 23,2 5,12 54,9 8,8 6,26
Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕRC Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Тепловая мощность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Номинальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	m³/h Pa Pa kW kW kW HOCTИ Pa Pa kW kW - kW kW - kW kW - kW kW - kW kW kW - kW kW kW kW	1300 630 630 10,6 2,7 2,9 4,57 5,9 0,7 8,38	2200 630 630 17,5 4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	4600 630 630 38,7 10,9 11,1 4,47 21,0 2,5 8,28	7200 600 630 58,4 14,9 15,7 4,67 32,9 4,2 7,80	9500 420 540 79 21,3 20,4 4,91 43,4 5,8 7,55	12000 630 630 95,9 22,9 23,2 5,12 54,9 8,8 6,26
Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕRс Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Охлаждение Общая холодопроизводительность Потребление компрессоров ЕЕRс Нагрев Тепловая мощность Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный поток воздуха Номинальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха	(1) (1) (1) (2) (2) (2) (3) (3) (3)	m³/h Pa Pa kW kW kW HOCTИ Pa Pa kW kW - kW kW - kW kW - kW kW - kW kW kW - kW kW kW kW	1300 630 630 10,6 2,7 2,9 4,57 5,9 0,7 8,38	2200 630 630 17,5 4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	4600 630 630 38,7 10,9 11,1 4,47 21,0 2,5 8,28	7200 600 630 58,4 14,9 15,7 4,67 32,9 4,2 7,80	9500 420 540 79 21,3 20,4 4,91 43,4 5,8 7,55	12000 630 630 95,9 22,9 23,2 5,12 54,9 8,8 6,26
Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕRс Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	Pa Rw kW kW kW - kW kW - HOCTH Pa Pa kW kW kW - KW kW kW - KW kW - KW kW - KW	630 630 10,6 2,7 2,9 4,57 5,9 0,7 8,38	630 630 17,5 4,2 4,9 4,41 10,0 1,4 7,45	630 630 38,7 10,9 11,1 4,47 21,0 2,5 8,28 1278 4600	600 630 58,4 14,9 15,7 4,67 32,9 4,2 7,80	420 540 79 21,3 20,4 4,91 43,4 5,8 7,55	630 630 95,9 22,9 23,2 5,12 54,9 8,8 6,26
давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕЕКС Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Макомальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕЕКС Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Нотребление компрессоров Нотребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	Pa kW kW kW - kW kW - HOCTH I/s m³/h Pa Pa kW kW	630 10,6 2,7 2,9 4,57 5,9 0,7 8,38 361 1300 630	630 17,5 4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	38,7 10,9 11,1 4,47 21,0 2,5 8,28	58,4 14,9 15,7 4,67 32,9 4,2 7,80	79 21,3 20,4 4,91 43,4 5,8 7,55	95,9 22,9 23,2 5,12 54,9 8,8 6,26
Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕRс Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнея статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздума Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	Pa kW kW kW - kW kW - HOCTH I/s m³/h Pa Pa kW kW	630 10,6 2,7 2,9 4,57 5,9 0,7 8,38 361 1300 630	630 17,5 4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	38,7 10,9 11,1 4,47 21,0 2,5 8,28	58,4 14,9 15,7 4,67 32,9 4,2 7,80	79 21,3 20,4 4,91 43,4 5,8 7,55	95,9 22,9 23,2 5,12 54,9 8,8 6,26
давление (выброс) Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕКс Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	kW kW - k	10,6 2,7 2,9 4,57 5,9 0,7 8,38 361 1300	17,5 4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	38,7 10,9 11,1 4,47 21,0 2,5 8,28 1278 4600	58,4 14,9 15,7 4,67 32,9 4,2 7,80	79 21,3 20,4 4,91 43,4 5,8 7,55	95,9 22,9 23,2 5,12 54,9 8,8 6,26
Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕRC Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха	(1) (1) (1) (2) (2) (2) (3) (3) (3)	kW kW - k	10,6 2,7 2,9 4,57 5,9 0,7 8,38 361 1300	17,5 4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	38,7 10,9 11,1 4,47 21,0 2,5 8,28 1278 4600	58,4 14,9 15,7 4,67 32,9 4,2 7,80	79 21,3 20,4 4,91 43,4 5,8 7,55	95,9 22,9 23,2 5,12 54,9 8,8 6,26
Охлаждение Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕRC Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха	(1) (1) (1) (2) (2) (2) (3) (3) (3)	kW kW - kW - loctи l/s m³/h Pa Pa kW kW kW	2,7 2,9 4,57 5,9 0,7 8,38 361 1300 630	4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	10,9 11,1 4,47 21,0 2,5 8,28 1278 4600	14,9 15,7 4,67 32,9 4,2 7,80 2000 7200	21,3 20,4 4,91 43,4 5,8 7,55	22,9 23,2 5,12 54,9 8,8 6,26
Общая холодопроизводительность Мощность повторного нагрева Потребление компрессоров ЕЕВС Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Макамальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕВС Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	kW kW - kW - loctи l/s m³/h Pa Pa kW kW kW	2,7 2,9 4,57 5,9 0,7 8,38 361 1300 630	4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	10,9 11,1 4,47 21,0 2,5 8,28 1278 4600	14,9 15,7 4,67 32,9 4,2 7,80 2000 7200	21,3 20,4 4,91 43,4 5,8 7,55	22,9 23,2 5,12 54,9 8,8 6,26
Мощность повторного нагрева Потребление компрессоров EERC Нагрев Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность EERC Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (1) (2) (2) (2) (3) (3) (3)	kW kW - kW - loctи l/s m³/h Pa Pa kW kW kW	2,7 2,9 4,57 5,9 0,7 8,38 361 1300 630	4,2 4,9 4,41 10,0 1,4 7,45 611 2200 630	10,9 11,1 4,47 21,0 2,5 8,28 1278 4600	14,9 15,7 4,67 32,9 4,2 7,80 2000 7200	21,3 20,4 4,91 43,4 5,8 7,55	22,9 23,2 5,12 54,9 8,8 6,26
Потребление компрессоров EERC Нагрев Гепловая мощность Потребление компрессоров СОРС Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Гепловая мощность Потребление компрессоров СОРС Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(1) (1) (2) (2) (2) (3) (3) (3)	kW - kW kW - loctи I/s m³/h Pa Pa kW kW kW	2,9 4,57 5,9 0,7 8,38 361 1300 630	4,9 4,41 10,0 1,4 7,45 611 2200 630	11,1 4,47 21,0 2,5 8,28 1278 4600	15,7 4,67 32,9 4,2 7,80 2000 7200	20,4 4,91 43,4 5,8 7,55 2638 9500	23,2 5,12 54,9 8,8 6,26 3333 12000
ЕЕRC Нагрев Гепловая мощность Потребление компрессоров СОРС Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Гепловая мощность Потребление компрессоров СОРС Работа с увеличенным потоком воздуха Номинальный поток воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха Максимальный расход воздуха	(1) (2) (2) (2) 1 мощі (3) (3) (3)	kW kW HOCTИ I/s m³/h Pa Pa kW kW	4,57 5,9 0,7 8,38 361 1300 630	4,41 10,0 1,4 7,45 611 2200 630	21,0 2,5 8,28 1278 4600	4,67 32,9 4,2 7,80 2000 7200	4,91 43,4 5,8 7,55 2638 9500	5,12 54,9 8,8 6,26 3333 12000
Нагрев Тепловая мощность Тотребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(2) (2) (2) (3) (3) (3)	kW kW - HOCTИ Vs m³/h Ра Ра kW kW	5,9 0,7 8,38 361 1300 630	10,0 1,4 7,45 611 2200 630	21,0 2,5 8,28 1278 4600	32,9 4,2 7,80 2000 7200	43,4 5,8 7,55 2638 9500	54,9 8,8 6,26 3333 12000
Тепловая мощность Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальное внешнее статическое давление (приток)	(2) (2) (3) (3) (3)	I/s m³/h Pa Pa kW kW	0,7 8,38 361 1300 630	1,4 7,45 611 2200 630	2,5 8,28 1278 4600	4,2 7,80 2000 7200	5,8 7,55 2638 9500	8,8 6,26 3333 12000
Потребление компрессоров СОРс Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(2) (2) (3) (3) (3)	kW - HOCTИ I/s m³/h Pa Pa kW kW	0,7 8,38 361 1300 630	1,4 7,45 611 2200 630	2,5 8,28 1278 4600	4,2 7,80 2000 7200	5,8 7,55 2638 9500	8,8 6,26 3333 12000
СОРС Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКС Нагрев Гепловая мощность Потребление компрессоров СОРС Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(2) i мощі (3) (3) (3)	- HOCTИ I/s m³/h Pa Pa kW kW	361 1300 630	7,45 611 2200 630	1278 4600	7,80 2000 7200	7,55 2638 9500	6,26 3333 12000
Работа на максимально возможной Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Гепловая мощность Потребление компрессоров Потребление компрессоров СОРС Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3) (3) (3)	l/s m³/h Pa Pa kW kW	361 1300 630	611 2200 630	1278 4600	2000	2638 9500	3333 12000
Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРС Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	l/s m³/h Pa Pa kW kW	1300 630	2200 630	4600	7200	9500	12000
Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров Огребление компрессоров Огребление компрессоров ОРС Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	Pa Pa kW kW	1300 630	2200 630	4600	7200	9500	12000
Номинальный расход воздуха максимальное внешнее статическое давление (приток) максимальное внешнее статическое давление (выброс) Охлаждение Общая колодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRС Нагрев Потребление компрессоров Потребление компрессоров Потребление компрессоров Потребление компрессоров Остребление компрессоров Остребления Воздуха Остребления Расход воздуха Остребление (приток)	(3)	Pa Pa kW kW	1300 630	2200 630	4600	7200	9500	12000
Максимальное внешнее статическое давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Гепловая мощность Потребление компрессоров Потребление компрессоров Огребление компрессоров Огребление компрессоров СОРс Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	Pa Pa kW kW	630	630				
давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Тотребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Гепловая мощность Тотребление компрессоров Тотребление компрессоров Тотребление компрессоров Тотребление компрессоров Тотребление компрессоров СОРС Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	Pa kW kW			630	600	420	200
давление (приток) Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Гепловая мощность Потребление компрессоров Потребление компрессоров СОРС Работа с увеличенным потоком воздума Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	Pa kW kW			630	600	420	
Максимальное внешнее статическое давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRс Нагрев Гепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком воздума Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	kW kW	630	630			· ·	630
давление (выброс) Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRс Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Максимальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	kW kW	630	630	ac -			
Охлаждение Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность ЕЕRC Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возду	(3)	kW		030	630	630	540	630
Общая холодопроизводительность Потребление компрессоров Дополнительная доступная мощность EERC Нагрев Гепловая мощность Потребление компрессоров Потребление компрессоров СОРС Работа с увеличенным потоком воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	kW						
Потребление компрессоров Дополнительная доступная мощность ЕЕКс Нагрев Потребление компрессоров Потребление компрессоров СОРС Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	kW	10,6	17,5	38,7	58,4	79,0	95,9
Дополнительная доступная мощность EERC Нагрев Тепловая мощность Тотребление компрессоров Тотребление компрессоров СОРС Работа с увеличенным потоком воздума Номинальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)		3,3	5,5	12,5	17,7	22,9	26,1
ЕВС Нагрев Тепловая мощность Тотребление компрессоров Тотребление компрессоров ОРС Работа с увеличенным потоком возуманоминальный поток воздуханоминальный расход воздуханоминальный расход воздуханоминальное внешнее статическое давление (приток)								
Нагрев Тепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	kW	3,6	5,7	14,0	19,8	27,7	30,9
Гепловая мощность Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возу Максимальный поток воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)		-	3,25	3,18	3,10	3,31	3,45	3,68
Потребление компрессоров Потребление компрессоров СОРс Работа с увеличенным потоком возу Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)								
Потребление компрессоров СОРС Работа с увеличенным потоком возу Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(4)	kW	10,5	17,8	37,1	58,2	76,8	96,9
COPc Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(4)	kW	2,3	3,8	7,1	11,2	14,4	18,3
Работа с увеличенным потоком возд Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(3)	_kW	4,4	7,5	15,6	24,4	32,3	40,7
Максимальный поток воздуха Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое давление (приток)	(4)	-	4,61	4,72	5,21	5,20	5,33	5,29
Номинальный расход воздуха Номинальный расход воздуха Максимальное внешнее статическое цавление (приток)	здуха							
Номинальный расход воздуха Максимальное внешнее статическое давление (приток)								
Максимальное внешнее статическое давление (приток)		l/s	528	972	1944	2556	3194	3889
давление (приток)		m³/h	1900	3500	7000	9200	11500	14000
давление (приток)				470		455	0.45	045
,		Pa	630	470	630	455	345	615
давление (выброс)		Pa	630	530	630	535	400	630
Охлаждение								
Охлаждение Общая холодопроизводительность	(5)	kW	9,2	18,2	31,9	45,1	62,0	80,6
•	(5)	kW	9,2 1,6	3,4	4,5	7,0	13,8	17,8
Потребление компрессоров	<u>(5)</u>		· · · · · · · · · · · · · · · · · · ·					
ERc	(5)	-	5,89	5,38	7,15	6,48	4,50	4,51
Нагрев	(0)	1.147		44.4	20.4	20.4	26.2	***
Гепловая мощность	(6)	_kW	6,0	11,1	22,1	29,1	36,3	44,2
Потребление компрессоров	(6)	kW	0,5	1,3	2,5	3,1	3,4	5,4
COPc	(6)		11,1	8,46	8,94	9,36	10,70	8,14
Колодильные контуры		Nr	11	1	2	2	2	2
Кол-во компрессоров		Nr	1	1	2	2	3	3
ип компрессоров	(7)	-	ROT	SCROLL	SCROLL	SCROLL	SCROLL	SCROLL
ип приточного вентилятора	(8)	-	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC
Соличество приточных вентиляторов	/-	Nr	1	1	1	1	1	2
ип вытяжного вентилятора	(8)		RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC	RAD/EC
Количество вытяжных вентиляторов	(0)	Nr	1	1	1	1	1	2
Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
/ровень звуковой мощности	(0)	dB(A)	77	77	79	79	80	83
Минимальный поток воздуха Максимальный поток воздуха	(9)		1000 1900	1600 3500	3300 7000	5200 9200	7500 11500	9500 14000

Erp (Energy Related Products) Европейская директива, которая включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21, не сообщает об этой категории Продуктов. DB = сухой термометр; WB = влажный термометр; EERc = Термодинамическая эффективность

системы в режиме охлаждения; СОРс = Термодинамическая эффективность системы в режиме нагрева

- (I) Температура наружного воздуха: 35°C С.Т./ 24°С М.Т. Температура выбросного воздуха: 26°С с.т. Влажность подаваемого воздуха: 11г/кг; Температура подаваемого воздуха: 24°С с.т. (2) Температура наружного воздуха: 7°С D.В./6°С М.В. Температура выбросного воздуха: 20°С

- ст./ 12°C м.т. Температура подаваемого воздуха: 20°C с.т. (3) Температура наружного воздуха: 35°C С.Т./ 24°C М.Т. Температура выбросного воздуха:
- 26°C с.т. Влажность подаваемого воздуха: 11г/кг (4) Температура наружного воздуха: 7°C С.Т./6,0°C В.Т.; Температура вытяжного воздуха: 20°C С.Т./12°C В.Т.; Температура приточного воздуха: 30°C С.Т.
- (5) Температура наружного воздуха: 35°C C.T./ 24°C M.T. Температура выбросного воздуха: 26°C с.т. Температура подаваемого воздуха: 22°C с.т. (6) Температура наружного воздуха: 7°C D.B./6°C W.B. Температура выбросного воздуха: 20°C с.т./ 12°C м.т. Температура подаваемого воздуха: 16°C с.т.

- С.І./ № С м.І. Температура подаваемого воздуха. 16 С с.г.
 (7) ROT = ротационный компрессор; SCROLL = спиральный компрессор
 (8) RAD = радиальный вентилятор; EC = электронно-коммутируемый двигатель
 (9) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальных стандартах
- (10) В случае использования с увеличенным потоком воздуха, возможен только максимальный поток воздуха

РЕКУПЕРАЦИЯ ТЕПЛА:

RTA Активная термодинамическая рекуперация (Стандартно)

ВЕРСИЯ:

RECH Гидравлический рекуператор для расширенного рабочего диапазона

EPWRC EXTRAPOWER-C (с дополнительным теплообменником водяного

охлаждения)

EPWRH XTRAPOWER-H (с дополнительным теплообменником на горячей

воде, без электронных фильтров)

РЕЖИМ РАБОТЫ:

RCM Холодильный контур с управлением мощностью (Стандартно)

ТЕПЛООБМЕННИК ВТОРИЧНОГО ПОДОГРЕВА:

СРНGM Газовый вторичный подогрев с управлением мощностью (Стандартно)

УСТАНОВКА БЛОКА:

Установка блока:

II Наружная установка (Стандартно)

аксессуары

CCA	Медно-алюминиевый теплообменник на вытяжном воздухе с	BACIP	BACnet-IP serial communication module
	акриловым покрытием	VRFG	VRF шлюз
CEA	Медно-алюминиевый теплообменник на заборе воздухе с акриловым покрытием	VSXSA	Изменение уставки коэффициента подаваемой влажности "X_SA" по внешнему сигналу: вкл/выкл через внешний контакт, или изменение
PVARC	Регулирование потока воздуха на притоке и вытяжке по датчику СО,		уставки через протоколы Modbus или BACnet-IP
PVARCV	Регулирование потока воздуха на притоке и вытяжке по датчикам	DESM	Датчик дыма
	CO ₂ +VOC	AMRX	Резиновые антивибрационные опоры
PVARP	Переменный поток для приточного и вытяжного воздуха с датчиком	AMRUX	Резиновые антивибрационные опоры для блока и модуль увлажнения
	перепада давления	RSSX	Датчик приточного воздуха удаленной установки
MHSEX	Модуль пароувлажниения с погружными электродами	PTCO	Подготовка к отгрузке с помощью контейнера
MOB	Последовательный порт RS485 с протоколом Modbus	F7B	Высокоэффективный воздушный фильтр класса F7 (замена
LON	Последовательный порт TP/FT с протоколом LonWorks		электронных фильтров)

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Приложения для водяного кольца

 VERSATEMP
 VERSATEMP
 VERSATEMP

 EQV-X
 EVH-X
 EVH-X SPACE

Moщности (A27/W35)

2,1 ÷ 4,1 kW

2,3 ÷ 4,2 kW

8 ÷ 31 kW

ErP соответствие

корпусе

Вертикальные без корпуса

Для наружной установки

Нагрев

Охлаждение

Термодинамическая рекуперация

Для помещений со средней посещаемостью

CLIVETPack² **CRH-XHE2**

9000-60000 m $^3/h$ - 51 ÷ 412 kW

WLHP System

Элементы системы

СЕРИЯ	PA3MEP OT	до	НАИМЕНОВАНИЕ	СТР.					
Моноблочный тепловой насос - во	одяной источник - внутре	нняя верт	гикальная установка, с корпусом	и без					
EQV-X	5	21	VERSATEMP	128					
Моноблочный тепловой насос - водяной источник - внутренняя, горизонтальная, канальная установка									
EVH-X	5	17	VERSATEMP	130					
EVH-X SPACE	2.1	12.1	VERSATEMP	132					
Моноблочный тепловой насос - во	дяной источник - крышні	ый конди	ционер для помещений со средне	ей посещаемостью					
CRH-XHE2	14.2	110.4	CLIVETPack ²	134					

WLHP

VERSATEMP

Высокоэффективный автономный кондиционер

Реверсивный тепловой насос

Безконденсаторный

Вертикальной внутренней установки в корпусе или без корпуса

Мощность от 2,1 до 4,1 kW

- ✓ Реверсивный тепловой насос
- ✓ Повышенная энергоэффективность при любых рабочих условиях
- ✓ Вертикальной внутренней установки в корпусе или без корпуса
- ✓ Элегантный дизайн и бесшумность в работе
- ✓ Предусмотрена возможность установки специальных гидравлических узлов в зависимости от типа комплексной установки
- Совместимость с основными протоколами связи
- ✓ Идеально подходит для модернизации комплексных установок

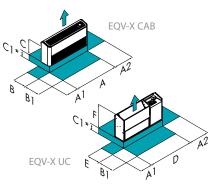
функции и характеристики

в корпусе, без

корпуса

совместимый

R-410A



Герметичный

Электронный расширительный клапан

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	▶▶ EQV-X	5	7	9	15	17	21
А - Длина	mm	1050	1200	1200	1350	1350	1350
В - Ширина	mm	240	240	240	240	240	240
С - Высота	mm	520	520	520	520	520	520
D - Длина	mm	945	1095	1095	1245	1245	1245
Е - Ширина	mm	225	225	225	225	225	225
F - Высота	mm	490	490	490	490	490	490
A1	mm	200	200	200	200	200	200
A2	mm	100	100	100	100	100	100
B1	mm	500	500	500	500	500	500
C1	mm	100	100	100	100	100	100
Эксплуатационная масса	kg	55	61	61	64	64	68

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

(*) Для блоков с воздухозаборником только снизу

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

UC Безкорпусной (стандартно) (Стандартно) CAB Вертикальное исполнение в корпусе

ВОЗДУХОЗАБОРНИК:

Забор воздуха снизу (Стандартно)

RF Забор воздуха спереди

технические характеристики

Размер	▶ ▶ E	QV-X	5	7	9	15	17	21
 Холодильная мощность 	(1)	kW	2,08	2,39	2,88	3,38	3,75	4,11
Явная холодильная мощность	(1)	kW	1,47	1,69	2,12	2,55	2,64	3,05
Потребление компрессоров	(1)	kW	0,43	0,56	0,61	0,71	0,77	0,84
Полная потребляемая мощность блока	(1)	kW	0,49	0,62	0,67	0,81	0,87	0,96
EER	(1)	-	4,19	3,78	4,2	4,09	4,22	4,2
• Тепловая мощность	(2)	kW	2,54	3,05	3,55	4,29	4,78	5,1
Потребление компрессоров	(2)	kW	0,47	0,63	0,7	0,77	0,92	1,04
Полная потребляемая мощность блока	(2)	kW	0,53	0,69	0,76	0,87	1,02	1,16
COP	(2)	-	4,91	4,49	4,71	5,05	4,72	4,49
Кол-во компрессоров	(3)	Nr	1	1	1	1	1	1
Тип компрессоров		-	ROT	ROT	ROT	ROT	ROT	ROT
Расход приточного воздуха	(4)	m³/h	380	460	455	750	750	830
Тип приточного вентилятора	(5)	-	CFG	CFG	CFG	CFG	CFG	CFG
Поток воды (сторона источника)		l/s	0,12	0,14	0,17	0,19	0,21	0,24
Номинальное напряжение	(6)	V	230/1~/50	230/1~/50	230/1~/50	230/1~/50	230/1~/50	230/1~/50
Уровень звукового давления		dB(A)	41	41	41	45	45	47
Директива ErP (Energy Related Prod	ucts)							
SEER	(7)	-	3,99	4,13	4,08	4,02	3,95	4,22
η _{s,c}	(7)		151,6	157,2	155,2	152,8	150	160,8
SCOP	(7)	-	4,15	3,8	3,85	3,8	4,02	3,84
η _{s H}	(7)		158	144	146	144	152,8	145,6

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

Значения получены в соответствии с EN14511:2022, в том числе мощность двигателя вентилятора и водяного насоса, потребляемая для преодоления перепадов давления внутри

Белімілири в водили от неромонетр. WB = влажный термометр
(1) Окружающий воздух 27°C С.Т./19°C М.Т. Температура воды на теплообменнике 30°C / 35°C
(2) Температура воздуха 20°C С.Т./15°C М.Т. Температура воды на входе в ТО 20°C; Температура водына выходе ТО считается по отношению к расходу воды из чиллера (3) ROT = роторный компрессор

(4) CFG = центробежный вентилятор

открытом пространстве

(5) Расход воды расчитан для режима охлаждения

(б) Уровень шума рассчитан для блока работающего при полной нагрузке на расстоянии 1м. Уровни шума могут быть другими, если блок установен в близи стен или препятствий. Измерения сделаны в соответствии с UNI EN ISO 9614-2, с блоками устаноленными на

(7) Данные рассчитаны в соответствии с EN 14825:2022

аксессуары

PFHCX

CONT	Электронный комнатный термостат, установлен на видимой стороне блока	PFHC1X	Гибкие шланги для воды 500 мм + шланг отвода конденсата (отдельно)
CONTX	Электронный комнатный термостат для безкорпусной версии	IFWX	Стальной сетчатый фильтр на стороне воды
CWMX	Электронное комнатное управление с дисплеем, для настенной	CDPX	насос для отвода конденсата
	установки	CDPA	Насос для отвода конденсата (встроенный)
CIWMX	Электронное комнатное управление с дисплеем, для настенной	FXVFX	Окрашенный плинтус для напольной установки
	установки	FXVFHX	Окрашенные напольные ножки с решеткой
MIPC	Гидравлический контур с постоянным расходом с ручными	FXPFX	Комплект оцинкованных напольных ножек
	клапанами	FXPMX	Удлинненые ножки для безкорпусной установки
MIPV	Гидравлический контур с переменным расходом с 2- х ходовым ON-	BACKV	Декоративная панель для задней стенки фанкойла
	OFF клапаном	MOBA	RS485 последовательный порт с протоколом Modbus, встроенный
REQV	Постоянный расход, соединение с EQV, VM, VV блоками	MOBX	Сетевой адаптер RS485 с протоколом Modbus
V2MODX	Комплект 2-х хходового клапана для проточной воды	CMSLWX	Модуль последовательной связи LON WORKS
KFVMX	2-х ходовой клапан с плавным регулированием расхода воды	BACX	Модуль последовательной связи по протоколу BACnet
DAOJX	Камера подачи воздуха для подключения гибких воздуховодов	CSVX	Два механических запорных клапана
GOJX	Решетка для раздачи воздуха с гибким подсоединением		
FCVBX	Балансировочный клапан		

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Гибкие шланги для воды 200 мм + шланг отвода конденсата

WLH

VERSATEMP

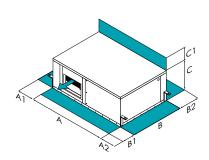
Высокоэффективный автономный кондиционер

Реверсивный тепловой насос Безконденсаторный Горизонтальный, внутренней установки,

бескорпусный Мощность от 2,3 до 4,2 kW

- ✓ Реверсивный тепловой насос
- Установка в помещении и в горизонтальном положении, с возможностью канализации
- ✓ Повышенная энергоэффективность при любых рабочих условиях
- ✓ Бесшумность в работе
- ✓ Предусмотрена возможность установки специальных гидравлических узлов в зависимости от типа комплексной установки
- ✓ Совместимость с основными протоколами связи
- ✓ Идеально подходит для модернизации комплексных установок

функции и характеристики



Тепловой Безконденсаторный Горизонтальные: насос встраиваемые

Герметичный Роторный

Электронный расширительный клапан

Размеры и зоны обслуживания

PA3MEP	▶▶ EVH-X	5	7	9	11	15	17
А - Длина	mm	1034	1034	1034	1034	1034	1034
В - Ширина	mm	513	513	513	513	513	513
С - Высота	mm	361	361	361	386	386	386
A1	mm	100	100	100	100	100	100
A2	mm	350	350	350	350	350	350
B1	mm	350	350	350	350	350	350
B2	mm	350	350	350	350	350	350
C1	mm	100	100	100	100	100	100
Эксплуатационная масса	kg	71	73	74	77	81	82

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами

технические характеристики

Размер	▶ ▶ E	VH-X	5	7	9	11	15	17
A27/19 W30								
 Холодильная мощность 	(1)	kW	2,26	2,83	3,16	3,45	3,87	4,16
Явная холодопроизводительность		kW	1,91	2,41	2,75	2,93	3,22	3,5
Полная потребляемая мощность блока		kW	0,54	0,66	0,74	0,77	0,85	0,92
EER (EN 14511:2022)		-	4,22	4,27	4,28	4,5	4,54	4,51
A20 W20								
 Тепловая мощность 	(2)	kW	2,76	3,38	3,85	4,15	4,5	4,92
Полная потребляемая мощность блока		kW	0,55	0,65	0,77	0,82	0,94	1,06
COP (EN 14511:2022)		-	4,99	5,2	4,97	5,05	4,81	4,66
A20 W15								
 Тепловая мощность 	(3)	kW	2,46	2,97	3,33	3,66	3,98	4,42
Полная потребляемая мощность блока		kW	0,55	0,63	0,72	0,8	0,89	1,02
COP (EN 14511:2022)		-	4,42	4,6	4,47	4,59	4,4	4,3
Кол-во компрессоров		Nr	1	1	1	1	1	1
Тип компрессоров	(4)	-	ROT	ROT	ROT	ROT	ROT	ROT
Расход приточного воздуха		m³/h	533	533	612	684	800	800
Тип приточного вентилятора	(5)	-	CFG	CFG	CFG	CFG	CFG	CFG
Количество приточных вентиляторов		Nr	1	1	1	1	1	1
Макс. статический напор приточного вентилятора		Pa	40	40	40	40	40	40
Поток воды (сторона источника)		I/s	0,13	0,16	0,18	0,2	0,22	0,24
Номинальное напряжение		V	230/1~/50	230/1~/50	230/1~/50	230/1~/50	230/1~/50	230/1~/50
Уровень звукового давления	(7)	dB(A)	33	33	34	34	34	35
Директива ErP (Energy Related Prod	ucts)							
SEER	(8)	-	3,75	4,06	3,9	4,1	4,05	4,18
η _{s,c}	(8)	-	142	154,4	148	156	154	159,2
SCOP	(8)	-	3,41	3,9	3,63	3,77	3,97	4,05
η _{s.H}	(8)		128,4	148	137,2	142,8	150,8	154

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) Nº 2016/2281, также известное как Ecodesign Lot21.

Значения получены в соответствии с EN14511:2022, в том числе мощность двигателя вентилятора и водяного насоса, потребляемая для преодоления перепадов давления внутри

- 0.70 кд. (1) Окружающий воздух 27°C С.Т./19°C М.Т. Температура воды на теплообменнике 30°C / 35°C (2) Температура воздуха 20°C С.Т. Температура воды на входе в ТО 20°C. Температура воды на въходе ТО считается по отношению к расходу воды из чиллера
- (3) Температура окружающего воздуха 20°C С.Т. Температура воды на входе теплообменника 15°C. Температура воды на выходе теплообменника определяется в зависимости от расхода охлаждаемой воды.

- (5) CFG = центробежный вентилятор (6) Расход воды расчитан для режима охлаждения
- (7) Расход воды расчитан для режима охлаждения Уровни шума соответствуют блоку при полной нагрузке и номинальных условиях тестирования. Уровень звукового давления на расстоянии 1 м от внешней поверхности блока, работающего на полной мощности на открытом пространстве. Доступное статическое давление 40 Па. В соответствии с UNI-EN ISO 3744 среднее значение звукового давления получено на дистанции в 1м от наружной поверхности канальной блока, установленного в потолке. Измерения сделаны в соответствии с UNI EN ISO 9614-2, с блоками устаноленными на открытом пространстве
- (8) Данные рассчитаны в соответствии с EN 14825:2022

аксессуары

VIFWX

CWMX	Электронное комнатное управление с дисплеем, для настенной	PFHCX	Гибкие шланги для воды 200 мм + шланг отвода конденсата
	установки	PFHC1X	Гибкие шланги для воды 500 мм + шланг отвода конденсата
CIWMX	Электронное комнатное управление с дисплеем, для настенной		(отдельно)
	установки	CDPX	насос для отвода конденсата
V2MODX	Комплект 2-х хходового клапана для проточной воды	MOBA	RS485 последовательный порт с протоколом Modbus, встроенный
V2ONX	2-х ходовой клапан откр-закр для регулировки расхода воды	MOBX	Сетевой адаптер RS485 с протоколом Modbus
TPF	Рамка-держатель для фильтра с боковым и нижним доступом	CMSLWX	Модуль последовательной связи LON WORKS
AMMX	Резиновые антивибрационные опоры	BACX	Модуль последовательной связи по протоколу BACnet
DAOJX	Камера подачи воздуха для подключения гибких воздуховодов	VIMANX	Ручной запортный клапан
DAIX	Воздуховод на всасывании	BPH2OX	Запорный клапан для байпаса (на стороне воды)
DAOIX	Канал выброса и забора воздуха		
FCVBX	Балансировочный клапан		

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Стальной фильтр и ручным отсечным клапаном

VERSATEMP

Крышный кондиционер

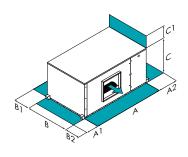
Реверсивный тепловой насос Безконденсаторный Внутренняя горизонтальная установка Канальный

Мощность от 4,8 до 30,8 kW

- ✓ Реверсивный тепловой насос
- ✓ Установка в помещении и в горизонтальном положении, с возможностью канализации
- ✓ Повышенная энергоэффективность при любых рабочих условиях
- ✓ Подача воздуха может осуществляться продольно или под углом 90°
- ✓ Предусмотрена возможность установки специальных гидравлических узлов в зависимости от типа комплексной установки
- ✓ Совместимость с основными протоколами связи
- ✓ Идеально подходит для модернизации комплексных установок

функции и характеристики

R-410A



Герметичный Роторный (Размер 2.1-5.1)

Спиральный (Размер 7.1-12.1)

Размеры и зоны обслуживания

встраиваемые

PA3MEP ►► EVH-X	SPACE	2.1	3.1	5.1	7.1	10.1	12.1
А - Длина	mm	962	962	1167	1167	1467	1467
В - Ширина	mm	692	692	802	802	927	927
С - Высота	mm	490	490	590	590	705	705
A1	mm	800	800	800	800	800	800
A2	mm	800	800	800	800	800	800
B1	mm	800	800	800	800	800	800
B2	mm	800	800	800	800	800	800
C1	mm	10	10	10	10	10	10
Эксплуатационная масса	kg	98	103	138	151	200	225

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

ПРИМЕНЕНИЕ:

w Применение для схемы "Водяная петля" (WLHP) (Стандартно) PW Применение для схемы "Водяная петля" (WLHP) (Стандартно)

технические характеристики

Размер	EVH-XS	PACE	2.1	3.1	5.1	7.1	10.1	12.1
 Холодильная мощность 	(1)	kW	4,81	8,46	11,2	17,9	25,9	30,8
Явная холодильная мощность	(1)	kW	3,74	6,44	8,84	13,9	20	22,4
Потребление компрессоров	(1)	kW	0,96	1,61	2,27	3,07	4,74	5,36
EER	(1)	-	3,59	4,05	3,58	4,17	4,24	3,97
 Тепловая мощность 	(2)	kW	7,06	9,83	13,5	22,1	32,3	36,4
Потребление компрессоров	(2)	kW	1,46	1,99	2,56	4,02	6,04	6,23
COP	(2)	-	4,01	4,1	3,97	4,17	4,42	4,23
Холодильные контуры		Nr	1	1	1	1	1	1
Кол-во компрессоров		Nr	1	1	1	1	1	1
Тип компрессоров		-	ROT	ROT	ROT	SCROLL	SCROLL	SCROLL
Расход приточного воздуха		m³/h	1000	1500	2800	3800	4900	6000
Тип приточного вентилятора	(3)	-	CFG	CFG	CFG	CFG	CFG	CFG
Количество приточных вентиляторог	3	Nr	1	1	1	1	1	1
Макс. статический напор приточного вентилятора	(4)	Pa	250	270	290	310	220	410
Поток воды (сторона источника)		I/s	0,27	0,47	0,64	1	1,47	1,72
Номинальное напряжение		٧	230/1~/50	230/1~/50	230/1~/50	400/3~/50+N	400/3 [~] /50+N	400/3~/50+N
Уровень звукового давления	(5)	dB(A)	37	42	44	49	47	50
Директива ErP (Energy Related	Products)							
SEER	(6)		3,28	3,93	3,57	4,23	4,47	3,97
η _{s,c}	(6)		123,1	149,1	134,9	161,3	170,8	150,9
SCOP	(6)		3,81	3,82	3,81	3,91	4,08	4,01
η _{s,н}	(6)		144,4	144,8	144,4	148,4	155,2	152,4

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

- (1) Наружный воздух 26°C DB / 19°C WB; Температура воды на входе в TO 30°C; Температура воды на выходе теплообменника 35°C
- (2) Температура внешнего воздуха 20°С; Температура воды на выходе теплообменника 10°С (3) CFG = центробежный вентилятор
- (4) Максимальное статическое давление при стандартном электровентиляторе при минимальной скорости и номинальном расходе воздуха; В соответствии с переменностью
- напряжения также значение производительности и напора (5) Уровни звука относятся к блокам с полной нагрузкой при номинальных условиях испытаний. Звуковое давление измерено на расстоянии 1 м от наружной поверхности блока, работающего в открытом пространстве
- . (6) Данные рассчитаны в соответствии с EN 14825:2022

аксессуары

APFLX	Держатель фильтра с доступом снизу	MOBX	Сетевой адаптер RS485 с протоколом Modbu
CDPX	насос для отвода конденсата	CSMSLWX	Модуль последовательной связи LON WORK
VIFWX	Стальной фильтр и ручным отсечным клапаном	BACX	Модуль последовательной связи по протоко
FCVBX	Балансировочный клапан	CWMX	Электронное комнатное управление с диспл
V20NX	2-х ходовой клапан откр-закр для регулировки расхода воды		установки
BPH20X	Запорный клапан для байпаса (на стороне воды)	CIWMX	Электронное комнатное управление с диспл
V2MANX	х ходовой ручной клапан для водяного контура с постоян-ным		установки
	расходом	AMMX	Резиновые антивибрационные опоры
V2MODX FLOX	Комплект 2-х хходового клапана для проточной воды Сигнализатор потока для управления потоком воды	PCFMO	Панели с классом огнестойкости МО

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

RKS колу BACnet плеем, для настенной плеем, для настенной

CLIVETPack²

Крышный кондиционер

Реверсивный тепловой насос Безконденсаторный Установка на крыше

Мощность от 51 до 412 kW

- ✓ Повышенная энергоэффективность при частичных нагрузках
- ✓ Умное управление процессом естественного охлаждения
- ✓ Повышенная эффективность фильтрации при низком энергопотреблении вентиляторов
- ✓ Термодинамическая рекуперация
- ✓ Подходит для закольцованных систем и систем с однократным использованием воды
- ✓ Совместимость с основными протоколами связи
- ✓ Широчайшие возможности настройки для любых условий эксплуатации
- √ Простота установки, все компоненты размещаются внутри машины
- 🗸 Дистанционное и централизованное управление системой с помощью INTELLIAIR

функции и характеристики

Тепловой Безконденсаторный Наружная

R-410A

Спиральный

рекуперация

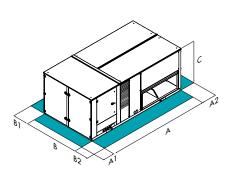
вытяжного воздуха)

охлаждение (Термодинамическая

вентилятором

клапан

воздуха



расход

воздуха

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

РАЗМЕР	▶► CRH-X	HE2	14.2	16.4	20.4	25.4	30.4	33.4	40.4	44.4
CAK	А - Длина	mm	3560	3560	4155	4155	4155	4155	4155	4155
CAK	В - Ширина	mm	2300	2300	2300	2300	2300	2300	2300	2300
CAK	С - Высота	mm	1405	1405	1405	1405	1405	1705	1705	1705
CAK	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500
CAK	A2	mm	1500	1500	1500	1500	1500	1500	1500	1500
CAK	B1	mm	1500	1500	1500	1500	1500	1500	1500	1500
CAK	B2	mm	1500	1500	1500	1500	1500	1500	1500	1500
CBK	Эксплуатационная масса	kg	1396	1456	1530	1549	1559	1602	1636	1641

PA3MEP	▶▶ CRH-X	HE2	49.4	54.4	60.4	70.4	80.4	90.4	100.4	110.4
CAK	А - Длина	mm	3910	3910	4900	4900	4900	5520	5520	5520
CAK	В - Ширина	mm	2300	2300	2300	2300	2300	2300	2300	2300
CAK	С - Высота	mm	2250	2250	2250	2250	2250	2250	2250	2250
CAK	A1	mm	1500	1500	1500	1500	1500	1500	1500	1500
CAK	A2	mm	1500	1500	1500	1500	1500	1500	1500	1500
CAK	B1	mm	1500	1500	1500	1500	1500	1500	1500	1500
CAK	B2	mm	1500	1500	1500	1500	1500	1500	1500	1500
СВК	Эксплуатационная масса	kg	2080	2397	2613	2672	3074	3245	3461	3987

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

САК Конфигурация с полной рециркуляцией (САК)

КОНФИГУРАЦИЯ КОНСТРУКЦИИ:

CAK онфигурация с одним вентилятором для работы в режиме полной рециркуляции (Стандартно)

CBK Конфигурация с одним вентилятором для рециркуляции и забора свежего воздуха на смешение

CCK

Конфигурации с дополнительным выбросным вентилятором, камерой смешения и выбросом отработанного воздуха

CCKP

Конфигурация с двойной секцией вентилятора, камерой свежего воздуха и термодинамической рекуперацией THOR

технические характеристики

Размер	RH-	KHE2	14.2	16.4	20.4	25.4	30.4	33.4	40.4	44.4
 Холодильная мощность (EN 14511:2022) 	(1)	kW	50,6	65,6	82,1	92,2	102,7	120,6	152,5	162,1
Явная холодильная мощность	(1)	kW	38,5	48,9	62,9	69,8	77,4	88,9	106,0	114,0
Потребление компрессоров	(1)	kW	9,1	13,0	15,4	17,4	19,1	21,2	26,6	28,8
EER (EN 14511:2022)	(1)	-	5,06	4,57	4,94	4,89	4,88	5,45	5,66	5,31
 Тепловая мощность (EN 14511:2022) 	(2)	kW	56,6	77,4	91,0	104,0	93,5	109,0	136,5	150,9
Потребление компрессоров	(2)	kW	9,9	15,5	18,2	20,4	23,8	27,7	30,1	33,3
COP (EN 14511:2022)	(2)		4,71	4,19	4,24	4,33	3,74	3,86	4,50	4,35
Холодильные контуры		Nr	2	2	2	2	2	2	2	2
Кол-во компрессоров		Nr	2	4	4	4	4	4	4	4
Тип компрессоров	(3)	-	SCROLL							
Расход приточного воздуха		m³/h	9000	11500	13500	15000	17000	18500	21000	23000
Тип приточного вентилятора	(4)	-	RAD/EC							
Количество приточных вентиляторов		Nr	1	1	2	2	2	2	2	2
Макс. статический напор приточного вентилятора	(5)	Pa	510	390	510	510	510	510	440	380
Поток воды (сторона источника)	(6)	I/s	2,87	3,80	4,69	5,28	5,88	6,79	8,53	9,16
Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Директива ErP (Energy Related Produ	cts)									
SEER - СРЕДНИЙ климат	(7)	-	5,12	5,22	5,51	5,46	5,35	6,15	6,99	6,58
$\eta_{s,c}$	(7)		196,8	200,7	212,4	210,2	206,1	238,1	271,6	255,3
SCOP - СРЕДНИЙ климат	(7)	-	3,99	4,26	4,03	4,59	4,32	4,66	5,38	4,79
<u>η_{s,H}</u>	(7)		151,6	162,4	153,2	175,6	164,8	178,4	207,2	183,6
Размер	RH-	KHE2	49.4	54.4	60.4	70.4	80.4	90.4	100.4	110.4
. V (FN 14F11-2022)	(4)	1.047	472.2	100 C	242 5	252.4	270.0	224 5	2011	2072

<u>П_{S,H}</u>	(/)		0,101	162,4	155,2	1/5,6	104,8	1/8,4	207,2	183,6
Размер	CRH-	KHE2	49.4	54.4	60.4	70.4	80.4	90.4	100.4	110.4
 Холодильная мощность (EN 14511:2022) 	(1)	kW	173,2	183,6	213,5	252,4	278,8	334,5	361,1	387,2
Явная холодильная мощность	(1)	kW	124	134	143	163	186	239	258	277
Потребление компрессоров	(1)	kW	30,8	33,1	39,9	45,4	52,4	61,7	66,3	72,1
EER (EN 14511:2022)	(1)	-	5,18	4,89	4,94	5,10	4,78	4,96	4,87	4,90
◆ Тепловая мощность (EN 14511:2022)	(2)	kW	165,5	179,3	198,3	235,9	264,7	316,8	346,2	378,3
Потребление компрессоров	(2)	kW	38,0	41,0	48,1	53,2	60,5	66,8	75,0	82,6
COP (EN 14511:2022)	(2)	-	4,13	4,00	3,92	4,48	4,03	4,38	4,31	4,22
Холодильные контуры		Nr	2	2	2	2	2	2	2	2
Кол-во компрессоров		Nr	4	4	4	4	4	4	4	4
Тип компрессоров	(3)	-	SCROLL							
Расход приточного воздуха		m³/h	26000	29000	33000	37000	44000	51000	56000	60000
Тип приточного вентилятора	(4)		RAD/EC							
Количество приточных вентиляторов		Nr	3	3	4	4	4	6	6	6
Макс. статический напор приточного вентилятор	a (5)	Pa	630	540	660	570	360	620	540	460
Поток воды (сторона источника)	(6)	I/s	9,40	10,0	11,70	13,80	15,40	18,40	19,80	21,30
Номинальное напряжение		V	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Директива ErP (Energy Related Prod	ucts)									
SEER - СРЕДНИЙ климат	(7)	-	6,29	5,07	5,61	6,07	5,47	5,80	5,17	5,31
η _{s,c}	(7)		243,7	195,0	216,6	234,9	210,7	224,0	198,9	204,5
SCOP - СРЕДНИЙ климат	(7)	-	4,92	4,52	4,04	4,73	4,31	4,54	4,55	4,60
η _{s,H}	(7)		188,8	172,8	153,6	181,2	164,4	173,6	174,0	176,0

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

Характеристики соответствуют работе при полной рециркуляции (Конфигурация САК) (1) Данные приведены для следующих условий: Параметры внутреннего воздуха 27°С/19°С М.Т. Вода во внутреннем теплообменнике 30/35°С; EER EN14511:2018 (2) Данные приведены для следующих условий: Температура окружающей среды 20°С (сухой

термометр); Температура воды на выходе теплообменника 10°C; СОР EN14511:2018

(3) SCROLL = Спиральный компрессор

(4) RAD = радиальный вентилятор; EC = электронно-коммутируемый

(5) Внешнее статическое давление на сеть для преодоления сопротивления подающих и забирающих воздуховодов

(6) Объем воды определяется исходя из мощности охлаждения (7) Данные рассчитаны в соответствии с EN 14825:2022

аксессуары

THR	Термодинамическая рекуперация на вытяжном воздухе THOR	IFWX	Стальной сетчатый фильтр на стороне воды
	(версия ССКР)	CHW2	2-х рядный водяной нагреватель
FC	Свободное-охлаждение на основе температуры	CHWER	Регенерация энергии от холодильного оборудования
FCE	Свободное-охлаждение в соответствии с наружной энтальпией	3WVM	Регулирующий 3-х ходовый клапан
M3	Раздача воздуха вниз	2WVM	2-х ходовый клапан
M5	Версия с распределением воздуха вверх	LTEMP1	Исполнение для работы при низкой температуре наружного воздуха
R3	Забор воздуха снизу	CPHG	Теплообменник подогрева горячим газом
SER	Клапан свежего воздуха с ручным приводом	HSE3	Электродный пароувлажнитель - 3 кг/час (разм. 14.2÷30.4)
SERM	Клапан на подаче свежего воздуха с приводом ОТКР/ЗАКР	HSE5	Электродный пароувлажнитель - 5 кг/час (разм. 14.2÷30.4)
SERMD	Управляемый выходной воздушный клапан	HSE8	8 кг/ч электродный пароувлажнитель (размер 14.2÷110.4)
PVAR	Переменный расход воздуха	HSE9	15 кг/ч паровой увлажнитель с погруженными электродами (размер
PCOSM	Постоянный расход воздуха на выходе		14.2÷110.4)
PAQC	Датчик качества воздуха для регулирования CO ₂ ч/м	HWS	Испарительный увлажнитель поверхностного типа
PAQCV	Датчик качества воздуха для регулирования ${ m CO_2}$ и ЛОС ч/м	MHP	Манометры высокого и низкого давления
VENH	Вентиляторы с повышенным напором	CMSC9	Модуль для последовательного соединения с системой
F7	Высокоэффективный воздушный фильтр класса F7		централизованного управления по протоколу Modbus
FIFD	Электронные фильтры типа iFD (ISO 16890 ePM1 90%)	CMSC10	Модуль последовательной связи с системой диспетчеризации на
PSAF	Дифференциальное реле перепада давления на загрязненных		базе протокола LonWorks
	воздушных фильтрах	CMSC11	Модуль последовательной связи с протоколом BACnet-IP
EH12	Термоэлектрические нагреватели мощностью 9 кВт (разм. 14.2÷16.4)	CTERM	Дистанционная клавиатура для управления температурой и
EH14	Термоэлектрические нагреватели мощностью 12 кВт (разм. 14.2÷30.4)		влажностью
EH17	Термоэлектрические нагреватели мощностью 18 кВт (разм. 14.2÷44.4)	CSOND	Контроль влажности и температуры окружающего воздуха
EH20	Термоэлектрические нагреватели мощностью 24 кВт (разм.		встроенными датчиками
	20.4÷110.4)	PM	Резиновые антивибрационные опоры
EH24	Термоэлектрические нагреватели мощностью 36 кВт (разм.	PFCC	Конденсаторы для увеличения коэффициента мощности (cosfi>0,95)
	33.4÷110.4)	DML	Demand Limit
EH28	Термоэлектрические нагреватели мощностью 48 кВт (разм.	DESM	Датчик дыма
	49.4÷110.4)	SFSTC	Устройство для плавного пуска компрессора
ACPC	Гидравлическая обвязка для водяной петли с постоянным расходом	PCM0	Сэндвич-панели класса огнезащиты МО
ACPV	Гидравлическая обвязка для водяной петли с переменным расходом	AMRX	Резиновые антивибрационные опоры
ACPM	Гидравлическая обвязка для систем с питьевой водой	RCX	Бордюр для установки на крыше
ACIS	Нагреватель защиты от обледенения на водяной стороне теплообменника	PTCO	Подготовка к отгрузке с помощью контейнера

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Коммерческий сектор

AURA

ELFOSpace BOX3

MOOD

Мощности (A27/W7)

1,5 ÷ 8,2 kW

3 ÷ 11 kW

2,7 ÷ 4,9 kW

ErP соответствие (только тепловые насосы)

Вертикальные в корпусе

Горизонтальные в корпусе

Вертикальные без корпуса

Горизонтальные без корпуса

Высокий напор

RS485 соединение

TERMINAL Units - AHU

Коммерческий и промышленный сектор

SAHU AQX CLA

Расход воздуха	1500÷15000 m³/h	1260÷160000 m³/h	1260÷160000 m³/h

продукты

Версии

Горизонтальный / вертикальный

Размер	8	с шагом 32, 50 мм	с шагом 32, 50 мм
Каркас / Панели	Теплоизолированный / сэндвич- панели толщиной 40 мм	Тепловой разрез / Двойная стенка толщиной 50/60 мм	Тепловой разрез / Двойная стенка толщиной 50/60 мм
Вентиляторы / Двигатели	Центробежные с ременной передачей и шкивом, а также вентиляторы Plug fan EC	Центробежные и с прямым приводом Plug fan / Асинхронные, с инвертором, ЕС электронное управление	Центробежные и с прямым приводом Plug fan / Асинхронные, с инвертором, ЕС электронное управление
Теплообменники	Вода / Прямое испарение	Вода / Вода высокого давления / Пар / Прямое испарение	Вода / Вода высокого давления / Пар / Прямое испарение
Рекуперация		Перекрестноточные / Роторные / с промежуточным теплоносителем (гликолевые)	Перекрестноточные / Роторные / с промежуточным теплоносителем (гликолевые)

Гигиеническая / Другая

Гигиеническая / Другая

FANCOILS and UTA

Элементы системы

СЕРИЯ	PA3MEP OT	до	НАИМЕНОВАНИЕ	CTP.
Фанкойлы				
CFF	1	12	AURA	142
CFFA	1	12	AURA	146
CFK	007.0	041.0	ELFOSpace BOX3	150
CFW-2	1	5	MOOD	154
Приточно-вытяжные установки				
SAHU	1	8	SAHU	156
AQX	1	32	-	158
CLA	1	32	-	160

AURA

Фанкойл

Вода

вентилятор DC

Возможность реверсирования гидравлических соединений в месте установки

Мощность от 1,5 до 8,2 kW

Компания Clivet участвует в программе ECP для "Фанкойлы". Проверьте срок действия сертификата на сайте www.eurovent-certification.com

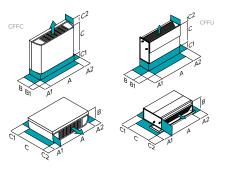
- ✓ Компактный и бесшумный, отличается элегантным дизайном, пригоден для установки в помещениях любого типа
- √ Возможность установки без встраивания и со встраиванием, в вертикальном или горизонтальном положении, с забором снизу или спереди
- ✓ Предусмотрены варианты для систем с 2 и 4 трубами
- √ Использование схемы, работающей от постоянного тока, обеспечивает уровень энергосбережения до 70%
- ✓ Гидравлические соединения с возможностью обратной замены на месте

функции и характеристики

Тепло &

корпуса

в корпусе, без бескорпусной в корпусе, без встраиваемые



Управление

Двигатель (DC двигатель)

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PAS	BMEP			1	2	3	4	_ 5	6	8	9	10	12
		ДО	mm	790	790	1020	1020	1240	1240	1240	1360	1360	1360
_	ДИМЕНСИИ	В	mm	200	200	200	200	200	200	200	200	200	200
2		С	mm	495	495	495	495	495	495	495	495	495	591
JC.	МОНТАЖНЫЕ	A1	mm	150	150	150	150	150	150	150	150	150	150
СFFС Корпусной	MOHIAXHBIE	A2	mm	150	150	150	150	150	150	150	150	150	150
	ІПОМЕЩЕНИЯ	С1 (только R3)	mm	90	90	90	90	90	90	90	90	90	90
		C2	mm	150	150	150	150	150	150	150	150	150	150
	MACCA	CFFC CC2 R3	kg	18	18,5	21,5	22	-	26,5	26,5	-	29,5	34,5
		CFFC CC4 R3	kg	-	-	22,5	-	27	-	-	30	-	-
		ДО	mm	628	628	858	858	1078	1078	1078	1198	1198	1198
οχ	ДИМЕНСИИ	В	mm	200	200	200	200	200	200	200	200	200	200
Ĕ		С	mm	455	455	455	455	455	455	455	455	455	551
pl)	MOLITANZILIE	A1	mm	150	150	150	150	150	150	150	150	150	150
8	МОНТАЖНЫЕ	A2	mm	150	150	150	150	150	150	150	150	150	150
0e	IDOMEIUEIUAG	C1	mm	90	90	90	90	90	90	90	90	90	90
СFFU бескорпусной	ІПОМЕЩЕНИЯ	C2	mm	150	150	150	150	150	150	150	150	150	150
S	MACCA	CFFU CC2 R3	kg	11,8	12,1	13,9	14,8	-	18,2	18,2	-	20,8	24,3
	MACCA	CFFU CC4 R3	kg	-	-	15,3	-	18,7	-	-	21,3	-	-

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

версии и конфигурации

ВЕРСИЯ:

CFFC Корпусной для портретной и ландшафтной инсталляции **CFFU** бескорпусной для портретной и ландшафтной инсталляции

ТИП УСТАНОВКИ:

CC2 2-х трубной (Стандартно)

CC4 4-х трубной

ВОЗДУХОЗАБОРНИК:

Возврат снизу (вертикальная установка / сзади (горизонтальная

установка) (Стандарт)

RF Возврат воздуха спереди (вертикальная установка) / снизу

(горизонтальная установка)

ГИДРАВЛИЧЕСКИЕ СОЕДИНЕНИЯ:

SX Разъемы слева (Стандартно)

DX Разъемы справа

УСТАНОВЛЕННЫЕ В КОРПУСЕ КЛАПАНЫ:

не требуется (Стандартно)

3V2 3-х ходового клапана типа "откр/закр" для 2-х трубной системы **3V4** 3-х ходового клапана типа "откр/закр" для 4-х трубной системы

УСТАНОВЛЕННЫЙ В КОРПУСЕ ТЕРМОСТАТ:

NOHMI не требуется (стандарт) **HMIDM** пульт управления KJRP-75A

Размер		CFF	1	2	3 [^]	4	6	8 [^]	10 [^]	12 [^]
2 х трубный										
Максимальная скорость										
Расход воздуха		m³/h	255	255	400	425	595	800	1190	1300
 Холодильная мощность 	(1)	kW	1,5	1,95	2,35	2,85	3,9	4,85	6,35	8,25
Явная холодильная мощность	(1)	kW	1,14	1,42	1,79	2,06	2,9	3,63	4,98	6,12
Расход воды	(1)	I/h	260	330	400	490	670	830	1090	1430
Падение давления воды	(1)	kPa	13,94	27,2	13,33	26,01	37,4	54,33	32,77	71,43
 Тепловая мощность 	(2)	kW	1,57	2,05	2,6	2,95	4	5,25	7,05	8,7
Расход воды	(2)	I/h	270	350	450	510	700	910	1220	1510
Падение давления воды	(2)	kPa	15,1	25,34	14,31	24,38	36,52	53,44	37,61	62,61
Полная потребляемая мощность блока		W	15	19	16	18	28	47	87	106
Средняя скорость										
Расход воздуха		m³/h	170	210	315	300	450	600	875	980
 Холодильная мощность 	(1)	kW	1,06	1,66	1,94	2,13	3,2	3,92	5,19	6,65
Явная холодильная мощность	(1)	kW	0,77	1,19	1,44	1,51	2,35	2,85	3,98	4,82
Расход воды	(1)	l/h	180	280	340	370	550	670	900	1140
Падение давления воды	(1)	kPa	8,21	20,88	9,98	15,06	25,91	36,81	21,75	46,17
Тепловая мощность	(2)	kW	1,07	1,75	2,11	2,15	3,22	4,09	5,61	6,81
Расход воды	(2)	l/h	190	300	370	370	560	710	980	1180
Падение давления воды	(2)	kPa	7,63	19,65	10,33	13,65	25,34	36,54	25,47	41,06
Полная потребляемая мощность блока		W	9	14	11	11	17	25	44	51
Минимальная скорость										
Расход воздуха		m³/h	150	150	190	190	310	420	530	680
 Холодильная мощность 	(1)	kW	0,92	1,21	1,19	1,41	2,43	2,93	3,62	4,84
Явная холодильная мощность	(1)	kW	0,66	0,85	0,86	0,96	1,72	2,08	2,68	3,42
Расход воды	(1)	l/h	160	210	210	240	420	510	630	830
Падение давления воды	(1)	kPa	6,16	12,2	4,59	7,41	15,37	21,77	11,43	25,39
 Тепловая мощность 	(2)	kW	0,92	1,25	1,34	1,42	2,39	3,04	3,83	4,85
Расход воды	(2)	l/h	160	220	230	240	410	530	670	830
Падение давления воды	(2)	kPa	5,84	10,25	4,5	6,64	14,22	20,47	12,5	21,68
Полная потребляемая мощность блока		W	8	9	7	8	10	13	18	22
Номинальное напряжение		V/n°/Hz				220-2	40/1/50			
Тип приточного вентилятора	(3)	-					FG			
Количество приточных вентиляторов		-	1	1	2	2	2	2	3	3
Н Уровень звукового давления	(4)	dB(A)	34	39	29	32	40	45	50	50
М Уровень звукового давления	(4)	dB(A)	24	33	24	23	34	39	43	43
L Уровень звукового давления	(4)	dB(A)	21	25	18	19	30	30	31	33
Н Уровень звуковой мощности	(4)	dB(A)	47	52	43	46	52	59	62	63
М Уровень звуковой мощности	(4)	dB(A)	36	46	37	37	45	51	56	57
L Уровень звуковой мощности	(4)	dB(A)	34	38	29	29	36	43	46	47

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

Воздушный поток со свободным выходом (статическое давление 0 Па) (1) входящей воды теплообменника 7°С (Температурный перепад 5°С) - Температура внешнего воздуха 27°C D.B. / 19°C W.B.

^{*} Радиочастотная версия недоступна

⁽²⁾ входящей воды теплообменника 45°C (Температурный перепад 5°C) - Температура внешнего воздуха 20°C

⁽³⁾ CFG = центробежный вентилятор

⁽⁴⁾ Уровни шума измерялись в безэховой камере на двухтрубной системе. Уровень звукового давления измерялся на расстоянии 1 м от наружной поверхности модуля, работающего на открытой площадке

технические характеристики 3* 5* 9* Размер 4 х трубны Максимальная скорость m³/h 425 Расход воздуха 595 1190 Холодильная мощность (1) kW 3,8 6.05 2,7 Явная холодильная мощность kW 1,9 2,8 4,8 (1)Расход воды l/h 460 650 1040 (1)(1) Падение давления воды kPa 16,97 39,17 53,66 Тепловая мощность (2)kW 2,3 2,88 4,6 200 Расход воды (2) l/h 250 390 Падение давления воды (2) kPa 28.16 55.37 132.32 Полная потребляемая мощность блока 29 W 20 92 Средняя скорость m³/h 280 461 887 Расход воздуха Холодильная мощность (1) kW 1,94 3,18 3,88 Явная холодильная мощность (1) kW 1,3 2,3 Расход воды (1) I/h 330 550 860 Падение давления воды (1) kPa 9,73 28.35 36,96 Тепловая мощность kW 1,78 2,49 3,95 (2)(2) I/h 150 210 340 Расход воды Падение давления воды (2) kPa 18,45 43 104,19 Полная потребляемая мощность блока W 11 17 46 Минимальная скорость Расход воздуха m³/h 158 324 564 Холодильная мощность kW 1,1 2,32 3,43 Явная холодильная мощность kW 0.7 1,61 2,53 (1) Расход воды (1) I/h 190 400 590 Падение давления воды (1) kPa 3,51 16.91 19.07 Тепловая мощность (2) kW 1.22 3.02 Расход воды (2) I/h 100 170 260 Падение давления воды (2) kPa 10.08 292 6373 Полная потребляемая мощность блока W 8 11 19 V/n°/Hz Номинальное напряжение 220-240/1/50 Тип приточного вентилятора (3) **CFG** Количество приточных вентиляторов 2 2 3 dB(A) Уровень звукового давления (4)32 40 50 Уровень звукового давления (4)dB(A) 23 34 43

19

46

37

29

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

(4) dB(A)

(4)

(4)

(4)

dB(A)

dB(A)

dB(A)

Воздушный поток со свободным выходом (статическое давление О Па)

(1) входящей воды теплообменника 7°С (Температурный перепад 5°С) - Температура внешнего воздуха 27°С D.B. /19°С W.B.

31

62

56

46

30

52

45

36

Уровень звукового давления

Уровень звуковой мощности

Уровень звуковой мощности

Уровень звуковой мощности

М

аксессуары

3V2SX/3V2DX Комплект трехходовых клапанов для 2-трубной системы типа "вкл/выкл"

(3V2SX для типа подключения слева / 3V2DX для типа подключения справа)

3V4SX/3V4DX Комплект трехходовых клапанов для 4-трубной системы типа "вкл/выкл"

(3V4SX для типа подключения слева / 3V4DX для типа подключения

BRVHX Дополнительный поддон для сбора конденсата для вертикальной/

горизонтальной установки

КРДХ Комплект ножек

КРDX Комплект ножек **ССМ09** Проводной цент

Проводной центральный пульт с недельным планировщиком

KJR90X KJR-90D электронный термостат для монтажа на стену

ССМ30-ВХ Центральный контроллер в корпусе

КJR150X групповой контроллер внутренних блоков

HMIFDCX КJRP-75А электронный термостат для монтажа на корпусе оборудования или на стене (для версий с DC двигателями)

EXTENX КJRP-75 удлинитель кабеля подключения (2м)

CCM-180A/WS Центральный контроллер для настенного монтажа с недельным таймером 6.2"

CCM-270A/WS Центральный контроллер для настенного монтажа с недельным таймером 10.1"

КСМDX Кабели подключения двигателя с соединениями справа (для версий с DC двигателями и типоразмеров 9-10-12)

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

⁽²⁾ входящей воды теплообменника 65°C (Температурный перепад 10°C) - Температура внешнего воздуха 20°C

⁽³⁾ CFG = центробежный вентилятор

⁽⁴⁾ Уровни шума измерялись в безэховой камере на двухтрубной системе. Уровень звукового давления измерялся на расстоянии 1 м от наружной поверхности модуля, работающего на открытой площадке

^{*} Радиочастотная версия недоступна

AURA

Фанкойл

Вода

Возможность реверсирования гидравлических соединений в месте установки

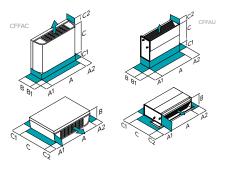
Мощность от 1,6 до 8,2 kW

бескорпусной

- ✓ Компактный и бесшумный, отличается элегантным дизайном, пригоден для установки в помещениях любого типа
- √ Возможность установки без встраивания и со встраиванием, в вертикальном или горизонтальном положении, с забором снизу или спереди
- ✓ Предусмотрены варианты для систем с 2 и 4 трубами
- ✓ Может без труда настраиваться с помощью внешних систем управления
- ✓ Гидравлические соединения с возможностью обратной замены на месте

функции и характеристики

Компания Clivet участвует в программе ECP для "Фанкойлы". Проверьте срок действия сертификата на сайте www.eurovent-certification.com



корпуса

Вертикальные: Вертикальные: Горизонтальные: Горизонтальные: в корпусе, без встраиваемые в корпусе, без встраиваемые корпуса

Control4 NRG

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3	MEP		CFFA	1	2	3	4	5	6	8	9	10	12
		А - Длина	mm	790	790	1020	1020	1240	1240	1240	1360	1360	1360
Σ̈́	ДИМЕНСИИ	В - Ширина	mm	200	200	200	200	200	200	200	200	200	200
웃		С - Высота	mm	495	495	495	495	495	495	495	495	495	591
(Корпусной)	МОНТАЖНЫЕ	A1	mm	150	150	150	150	150	150	150	150	150	150
Кор	MOULIAWURE	A2	mm	150	150	150	150	150	150	150	150	150	150
Ç	ІПОМЕЩЕНИЯ	С1 (только R3)	mm	90	90	90	90	90	90	90	90	90	90
CFFAC	ПОМЕЩЕНИЯ	C2	mm	150	150	150	150	150	150	150	150	150	150
S	MACCA	CFFAC CC2 R3	kg	16,3	16,7	20	20,8		25,4	26,3		28,5	34
	WACCA	CFFAC CC4 R3	kg			21,3		25,9		-	29		_
_		А - Длина	mm	628	628	858	858	1078	1078	1078	1198	1198	1198
СҒҒАՍ (бескорпусной)	ДИМЕНСИИ	В - Ширина	mm	200	200	200	200	200	200	200	200	200	200
Ϋ́		С - Высота	mm	455	455	455	455	455	455	455	455	455	551
пфс	МОНТАЖНЫЕ	A1	mm	150	150	150	150	150	150	150	150	150	150
CK	MOULIAWURE	A2	mm	150	150	150	150	150	150	150	150	150	150
99)	ІПОМЕЩЕНИЯ	C1	mm	90	90	90	90	90	90	90	90	90	90
Α̈́	помещения	C2	mm	150	150	150	150	150	150	150	150	150	150
뜽	MACCA	CFFAU CC2 R3	kg	11,6	12	13,9	14,8	-	18,2	18,8	-	21,7	25,2
	WACCA	CFFAU CC4 R3	kg	-	-	15,3	-	18,7	-	-	22,2	-	-

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

версии и конфигурации

ВЕРСИЯ:

CFFAC Корпусной для портретной и ландшафтной инсталляции **CFFAU** бескорпусной для портретной и ландшафтной инсталляции

ТИП УСТАНОВКИ:

CC2 2-х трубной (Стандартно)

CC4 4-х трубной

ВОЗДУХОЗАБОРНИК:

Возврат снизу (вертикальная установка / сзади (горизонтальная

установка) (Стандарт)

Возврат воздуха спереди (вертикальная установка) / снизу

(горизонтальная установка)

ГИДРАВЛИЧЕСКИЕ СОЕДИНЕНИЯ:

Разъемы слева (Стандартно)

DX Разъемы справа

УСТАНОВЛЕННЫЕ В КОРПУСЕ КЛАПАНЫ:

не требуется (Стандартно)

3V2 3-х ходового клапана типа "откр/закр" для 2-х трубной системы **3V4** 3-х ходового клапана типа "откр/закр" для 4-х трубной системы

УСТАНОВЛЕННЫЙ В КОРПУСЕ ТЕРМОСТАТ:

NOHMI не требуется (Стандарт)

HMIAM KJRP-86R термостат, смонтирован на корпусе оборудования

технические характеристики

Размер		CFFA	1*	2	3*	4	6	8*	10*	12*
2 х трубный										
Максимальная скорость										
Расход воздуха		m³/h	255	255	400	425	595	800	1150	1300
 Холодильная мощность 	(1)	kW	1,65	2,25	2,65	3,05	4,2	5,35	6,75	8,25
Явная холодильная мощность	(1)	kW	1,25	1,65	2,05	2,23	3,05	3,96	5,09	6,08
Расход воды	(1)	l/h	280	390	450	520	720	920	1160	1410
Падение давления воды	(1)	kPa	15,75	33,19	18,03	26,71	41,15	61,48	40,26	64,72
 Тепловая мощность 	(2)	kW	1,85	2,35	3,05	3,15	4,3	5,7	7,15	8,5
Расход воды	(2)	l/h	320	400	520	540	740	980	1230	1460
Падение давления воды	(2)	kPa	15,13	33,19	17,56	23,31	37,2	60,89	42,16	61,96
Полная потребляемая мощность блока		W	35	40	47	47	51	91	110	118
Средняя скорость										
Расход воздуха		m³/h	165	192	273	284	450	574	885	1132
Холодильная мощность	(1)	kW	1,22	1,85	2,02	2,26	3,38	4,25	5,8	7,52
Явная холодильная мощность	(1)	kW	0,88	1,35	1,5	1,61	2,43	3,08	4,36	5,53
Расход воды	(1)	I/h	210	320	350	390	580	730	1000	1290
Падение давления воды	(1)	kPa	9,33	22,37	11,18	15,66	27,07	41,44	29,2	55,03
Тепловая мощность	(2)	kW	1,29	1,87	2,24	2,28	3,43	4,36	5,81	7,6
Расход воды	(2)	I/h	220	320	380	390	590	750	1000	1300
Падение давления воды	(2)	kPa	8,22	22,37	10,28	12,57	24,5	37,73	28,68	47,46
Полная потребляемая мощность блока		W	17	24	26	26	32	54	89	104
Минимальная скорость										
Расход воздуха		m³/h	142	139	180	184	319	404	591	836
 Холодильная мощность 	(1)	kW	1,09	1,4	1,4	1,58	2,48	3,31	4,24	5,87
Явная холодильная мощность	(1)	kW	0,78	1	1,02	1,08	1,73	2,34	3,12	4,21
Расход воды	(1)	I/h	190	240	240	270	430	570	730	1010
Падение давления воды	(1)	kPa	7,37	4,64	5,48	8,42	15,71	26,62	16,15	34,88
• Тепловая мощность	(2)	kW	1,13	1,42	1,52	1,6	2,52	3,31	4,3	5,9
Расход воды	(2)	I/h	190	240	260	280	430	570	740	1020
Падение давления воды	(2)	kPa	6,64	4,64	5,43	6,11	13,75	21,79	14,66	28,84
Полная потребляемая мощность блока		W	14	15	14	14	19	35	64	82
Номинальное напряжение		V/n°/Hz				220-2	40/1/50			
Тип приточного вентилятора	(3)	-					FG			
Количество приточных вентиляторов			1	1	2	2	2	2	3	3
Н Уровень звукового давления	(4)	dB(A)	35	42	34	34	40	47	50	50
М Уровень звукового давления	(4)	dB(A)	24	35	24	25	35	40	44	45
L Уровень звукового давления	(4)	dB(A)	21	27	18	19	31	31	33	37
Н Уровень звуковой мощности	(4)	dB(A)	47	53	46	47	52	59	62	63
М Уровень звуковой мощности	(4)	dB(A)	35	47	37	38	45	51	56	58
L Уровень звуковой мощности	(4)	dB(A)	34	39	31	32	37	43	46	50

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

Воздушный поток со свободным выходом (статическое давление 0 Па) (1) входящей воды теплообменника 7°С (Температурный перепад 5°С) - Температура внешнего

воздуха 27°C D.B. / 19°C W.B.

⁽²⁾ входящей воды теплообменника 45°C (Температурный перепад 5°C) - Температура внешнего воздуха 20°C

⁽³⁾ CFG = центробежный вентилятор

⁽⁴⁾ Уровни шума измерялись в безэховой камере на двухтрубной системе. Уровень звукового давления измерялся на расстоянии 1 м от наружной поверхности модуля, работающего на открытой площадке

^{*} Радиочастотная версия недоступна

технические характеристики

Размер	CF	FA3*	5 [*]	9*
4 х трубный				
Максимальная скорость				
Расход воздуха	m		595	1150
 Холодильная мощность 	(1) k	W 2,89	4,09	6,4
Явная холодильная мощность	(1) k	W 2,05	2,94	4,9
Расход воды	(1)I/	h 500	700	1100
Падение давления воды	(1) kl	Pa 21,38	47,7	63,05
 Тепловая мощность 	(2) k	W 2,45	2,95	4,65
Расход воды	(2) 1/	h 210	250	400
Падение давления воды	(2) kl	Pa 31,95	58,17	135,21
Полная потребляемая мощность блока	V	V 47	51	110
Средняя скорость				
Расход воздуха	m		430	885
 Холодильная мощность 	(1) k		3,35	5,59
Явная холодильная мощность		W 1,39	2,38	4,25
Расход воды	(1)I/		570	960
Падение давления воды	(1) kl	Pa 11,95	33,04	48,47
Тепловая мощность	(2) k		2,5	4,09
Расход воды	(2) 1/	h 150	210	350
Падение давления воды	(2) kl	Pa 16,83	43,35	111,75
Полная потребляемая мощность блока	\	V 26	32	89
Минимальная скорость				
Расход воздуха	m	⁸ /h 184	319	591
 Холодильная мощность 	(1)k		2,35	4
Явная холодильная мощность	(1) k		1,6	2,95
Расход воды	(1)I/	h 210	400	690
Падение давления воды	(1)kl		18,22	27,23
 Тепловая мощность 	(2) k		2	3,19
Расход воды	(2) 1/		170	270
Падение давления воды	(2) kl	Pa 9,52	29,2	70,91
Полная потребляемая мощность блока	\	V 14	19	64
Номинальное напряжение	V/n	P/Hz	220-240/1/50	
Тип приточного вентилятора	(3)	-	CFG	
Количество приточных вентиляторов		- 2	2	3
Н Уровень звукового давления	(4) dB	(A) 34	40	50
М Уровень звукового давления	(4) dB		33	44
L Уровень звукового давления		(A) 19	24	33
Н Уровень звуковой мощности		(A) 47	52	62
М Уровень звуковой мощности		(A) 38	45	56
L Уровень звуковой мощности	(4) dB		37	46

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) № 2016/2281, также известное как Ecodesign Lot21.

Воздушный поток со свободным выходом (статическое давление 0 Па) (1) входящей воды теплообменника 7°С (Температурный перепад 5°С) - Температура внешнего воздуха 27°С D.B. / 19°С W.B.

аксессуары

3V2SX/3V2DX Комплект трехходовых клапанов для 2-трубной системы типа "вкл/выкл"

(3V2SX для типа подключения слева / 3V2DX для типа подключения

3V4SX/3V4DX Комплект трехходовых клапанов для 4-трубной системы типа "вкл/выкл"

(3V4SX для типа подключения слева / 3V4DX для типа подключения

BRVHX Дополнительный поддон для сбора конденсата для вертикальной/ горизонтальной установки

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

KPDX Комплект ножек

DCPRX Разъем для элетроподключения и управления 4 фанкойлами для 2-4 систем

HMIFACX KJRP-86R проводной термостат для монтажа на панели оборудования или на стене

BOXX Настенный монтаж со скрытой коробкой (подрозетник) KJRP-86R

HIDTI9X Электромеханический термостат настенной установки с дисплеем и встроенным датчиком температуры

⁽²⁾ входящей воды теплообменника 65°C (Температурный перепад 10°C) - Температура внешнего воздуха 20°C

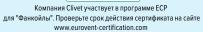
⁽³⁾ CFG = центробежный вентилятор

⁽⁴⁾ Уровни шума измерялись в безэховой камере на двухтрубной системе. Уровень звукового давления измерялся на расстоянии 1 м от наружной поверхности модуля, работающего на открытой площадке

^{*} Радиочастотная версия недоступна

ELFOSpace BOX3

Фанкойл

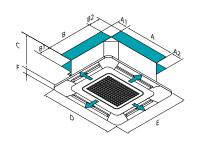

Вода

Кассетного типа для внутренней установки

Мощность от 2,98 до 11,19 kW

- ✓ Выполнен в виде двух блоков (600 x 600 и 800 x 800), что позволяет идеальным образом встраивать его в структуру
- ✓ Предусмотрены варианты для систем с 2 и 4 трубами
- ✓ Использование схемы, работающей от постоянного тока, обеспечивает уровень энергосбережения до 70%
- ✓ В серийную комплектацию входят пульт дистанционного управления и насос для удаления конденсата

функции и характеристики



Управление Control4 NRG

двигатель)

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP		CFK	007.0	011.0	015.0	021.0	031.0	041.0
CC2	А - Длина	mm	575	575	575	840	840	840
CC2	В - Ширина	mm	575	575	575	840	840	840
CC2	С - Высота	mm	261	261	261	230	300	300
CC2	D - Длина	mm	647	647	647	950	950	950
CC2	Е - Ширина	mm	647	647	647	950	950	950
CC2	F - Высота	mm	50	50	50	45	45	45
CC2	A1	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC2	A2	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC2	B1	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC2	B2	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC2	Эксплуатационная масса	kg	16,5+2,5	16,5+2,5	16,5+2,5	23+6	27+6	27+6
CC4	А - Длина	mm	575	575	575	840	840	840
CC4	В - Ширина	mm	575	575	575	840	840	840
CC4	С - Высота	mm	261	261	261	300	300	300
CC4	D - Длина	mm	647	647	647	950	950	950
CC4	Е - Ширина	mm	647	647	647	950	950	950
CC4	F - Высота	mm	50	50	50	45	45	45
CC4	A1	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC4	A2	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC4	B1	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC4	B2	mm	>1000	>1000	>1000	>1000	>1000	>1000
CC4	Эксплуатационная масса	kg	16,7+2,5	16,7+2,5	16,7+2,5	27,5+6	30+6	30+6

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании. СС2 2 трубный

СС4 4 трубный

версии и конфигурации

КОНФИГУРАЦИЯ ТЕПЛООБМЕННИКА:

СС2 Конфигурация теплообменника для 2-х трубной системы (Стандартно)

СС4 Конфигурация теплообменника для 4-х трубной системы

СТАНДАРТНАЯ КОНФИГУРАЦИЯ:

IRPCB Электроника с инфракрасным управлением (Стандартно)

R05 R05 инфракрасное удаленное управление

VEC Высокоэффективный вентилятор с электронной коммутацией (EC)

ХҮЕ Порт связи ХҮЕ (стандартный)

Размер		CFK	007.0	011.0	015.0	021.0	031.0	041.0
2 х трубный								
Максимальная скорость								
Расход воздуха		m³/h	535	610	781	1175	1581	1871
 Холодильная мощность 	(1)	kW	2,98	3,96	4,2	5,93	7,87	10,7
Явная холодильная мощность	(1)	kW	2,49	3,2	3,45	5	6,68	9,04
Расход воды	(1)	l/h	513	681	722	1020	1354	1925
Падение давления воды	(1)	kPa	10	11,5	12,3	23,8	22,3	36,6
 Тепловая мощность 	(2)	kW	2,61	4,08	4,95	6,06	9,16	8,98
Расход воды	(2)	l/h	449	702	851	1042	1576	1732
Падение давления воды	(2)	kPa	12,1	12,7	9,4	25,9	28,8	49,2
Полная потребляемая мощность блока		W	15	37	43	41	85	137
Средняя скорость		20	400	477			4074	4445
Расход воздуха		m³/h	429	477	611	987	1371	1415
• Холодильная мощность	(1)	kW	2,53	3,26	3,48	5,3	7,12	8,82
Явная холодильная мощность	(1)	kW	2,08	2,57 561	2,74 599	4,34 912	5,95 1225	7,03 1517
Расход воды Падение давления воды	(1)	l/h kPa	435 7	8,2	8,6	19,1	18,1	22,7
Тепловая мощность	(1)	kW	2,31	3,34	3,99	5,72	8,54	9,37
Расход воды	(2)	I/h	397	574	686	985	1469	1612
Расход воды Падение давления воды	(2)	kPa	8,5	8,6	8,2	20,1	24	31,2
Полная потребляемая мощность блока		W	9	15	28	30	59	58
Минимальная скорость								
Расход воздуха		m³/h	322	381	494	768	1236	1198
 Холодильная мощность 	(1)	kW	2	2,76	3,01	4,4	6,67	7,48
Явная холодильная мощность	(1)	kW	1,59	2,1	2,31	3,52	5,5	5,97
Расход воды	(1)	I/h	344	475	518	757	1147	1287
Падение давления воды	(1)	kPa	5	6,5	7,4	13,6	16,3	16,4
• Тепловая мощность	(2)	kW	2,24	2,73	3,26	5,32	7,9	8,68
Расход воды	(2)	I/h	385	470	561	915	1359	1493
Падение давления воды	(2)	kPa	5,3	6	6,1	19,9	20,7	23,3
Полная потребляемая мощность блока		W	5	9	21	20	45	39
4 х трубный								
Максимальная скорость								
Расход воздуха		m³/h	493	669	673	1184	1642	1708
 Холодильная мощность 	(1)	kW	2,16	2,78	2,77	4,96	7,98	8,04
Явная холодильная мощность	(1)	kW	1,86	2,4	2,33	4,15	6,68	6,58
Расход воды	(1)	l/h	372	478	476	853	1373	1383
Падение давления воды	(1)	kPa	17,4	13,15	16,8	14,8	33,9	33
 Тепловая мощность 	(2)	kW	3,13	3,71	3,94	6,15	9,75	9,93
Расход воды	(3)	l/h	269	319	339	529	839	854
Падение давления воды	(3)	kPa	23,5	24,1	26,8	25,3	42,4	48,7
Полная потребляемая мощность блока		W	24	38	42	62	121	139
Средняя скорость								
Расход воздуха		m³/h	395	523	526	997	1421	1297
 Холодильная мощность 	(1)	kW	1,86	2,38	2,38	4,38	7,25	6,62
Явная холодильная мощность	(1)	kW	1,58	2	1,97	3,71	5,99	5,51
Расход воды	(1)	l/h	320	409	409	753	1247	1139
Падение давления воды	(1)	kPa	13,5	9,4	13,1	11,5	30	22,6
Тепловая мощность	(2)	kW	2,63	3,14	3,3	5,43	8,96	8,33
Расход воды	(3)	I/h	226	270	284	467	771	716
Падение давления воды	(3)	kPa	17,1	17,9	19,2	20,5	36,6	32,5
Полная потребляемая мощность блока		W	18	35	27	44	83	70
Минимальная скорость								
Расход воздуха			295	415	425	783	1285	1096
• Холодильная мощность	(1)	kW	1,49	2,05	2,07	3,64	6,7	5,84
Явная холодильная мощность	(1)	kW	1,24	1,67	1,7	3,05	5,5	4,81
Расход воды	(1)	I/h	256	353	356	626	1152	1004
Падение давления воды	(1)	kPa	9,3	7	10,3	8,1	24	17,7
• Тепловая мощность	(2)	kW	2,08	2,65	2,83	4,61	8,42	7,51
Расход воды	(3)		179	228	243	396	724	646
Падение давления воды	(3)	kPa	11,3	13,1	14,5	14,5	32,6	27
Полная потребляемая мощность блока		W	14	30	20	30	66	49
Номинальное напряжение		V/n°/Hz				40/1/50		
Тип приточного вентилятора	(4)					=G		
Количество приточных вентиляторов								
Н Уровень звукового давления	(5)	dB(A)	39	42	43	43	48	49
М Уровень звукового давления	(5)	dB(A)	33	36	38	39	44	43
L Уровень звукового давления	(5)	dB(A)	27	30	32	33	41	39
Н Уровень звуковой мощности	(5)	dB(A)	51	54	55	55	60	61

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21. (1) входящей воды теплообменника 7°С (Температурный перепад 5°С) - Температура внешнего воздуха 27°С D.B. / 19°С W.B.

(5) dB(A)

dB(A)

45

39

Уровень звуковой мощности

Уровень звуковой мощности

внешнего воздуха 20°C (3) входящей воды теплообменника 65°C (Температурный перепад 10°C) - Температура 44 внешнего воздуха 20°C

48

внешнего воздуха 20°C (4) CFG = центробежный вентилятор

50

(5) Уровни шума, испытанные в безэховой камере и относящиеся к агрегатам для 2-трубных систем. Уровень звукового давления относится к 1 м от внешней поверхности агрегата, работающего на открытой местности

51

45

56

53

55

51

⁽²⁾ входящей воды теплообменника 45°C (Температурный перепад 5°C) - Температура

аксессуары

KJR90X KJR-90D электронный термостат для монтажа на стену

KJR150X групповой контроллер внутренних блоков **360PX** групповой контроллер внутренних блоков

ССМ30ВХ Центральный контроллер в корпусе

ССМО9 Проводной центральный диспетчерский блок с недельным

планировщиком

CCM-180A/WS Центральный контроллер для настенного монтажа с недельным таймером 6.2" (Совместимость с 021.0÷041.0)

CCM-270A/WS Центральный контроллер для настенного монтажа с недельным таймером 10.1" (Совместимость с 021.0÷041.0)

3V2X Комплект трехходовых клапанов для 2-трубной системы типа "вкл/выкл"

3V4X Комплект трехходовых клапанов для 4-трубной системы типа "вкл/выкл"

DTX Вспомогательный поддон для сбора конденсата

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

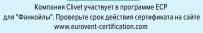
Для проверки совместимости различных опций обратитесь к техническому каталогу или нашему вэб-сайту к разделу "Системы и Продукты"

MOOD

Фанкойл

Вода

Настенный, корпусной

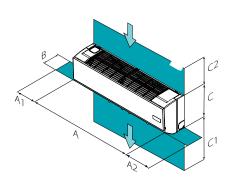

Мощность от 2,7 до 4,87 kW

- ✓ Компактный и бесшумный, идеально подходит для установки в жилых и торговых помещениях
- √ Использование схемы, работающей от постоянного тока, обеспечивает уровень энергосбережения до 70%
- ✓ В серийную комплектацию входят пульт дистанционного управления, трехходовой клапан и порт Modbus

функции и характеристики

в корпусе, без

корпуса



постоянного тока (DC двигатель)

Управление Control4 NRG

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3MEP	CFW-2	1	2	3	4	5
А - Длина	mm	916	916	916	1074	1074
В - Ширина	mm	233	233	233	237	237
С - Высота	mm	290	290	290	317	317
A1	mm	300	300	300	300	300
A2	mm	300	300	300	300	300
C1	mm	2000÷3000	2000÷3000	2000÷3000	2000÷3000	2000÷3000
C2	mm	300	300	300	300	300
Эксплуатационная	l/a	12.7	12,7	12.7	14.9	14,9
масса	kg	12,7	12,7	12,7	14,5	14,5

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Для всех других конфигураций - см. в техническом описании.

версии и конфигурации

СТАНДАРТНАЯ КОНФИГУРАЦИЯ:

IRPCB Электроника с инфракрасным управлением (Стандартно)

RO5 RO5 инфракрасное удаленное управление

VEC Высокоэффективный вентилятор с электронной коммутацией (EC)

3V2 Комплект 3-х ходового клапана типа "откр/закр" для 2-х трубной

системы(Standard)

CRCC чистые контакты котлов/циркуляторов

технические характеристики

Размер	CF	N-2	12	3	4	5
2 х трубный						
Максимальная скорость						
Расход воздуха		³ /h 49	92 58	5 825	862	979
 Холодильная мощность 	(1) k	:W 2	,7 2,9	1 3,81	4,47	4,87
Явная холодильная мощность	(1) k	:W 2,	15 2,3	3 3,18	2,66	4,11
Расход воды	(1) I	/h 46	55 50	1 656	770	839
Падение давления воды	(1) k	Pa 31	,6 37,	2 56,8	41,2	50,7
 Тепловая мощность 	(2) k	:W 2,	12 3,2	3 4,3	4,36	5,26
Расход воды	(2) I	/h 36	55 55	6 741	751	906
Падение давления воды	(2) k	Pa 37	7,5 40,	6 61,9	43,7	51,7
Полная потребляемая мощность блока		W 1	3 15	34	26	38
Средняя скорость						
Расход воздуха	m	³/h 45	54 48	689	741	849
 Холодильная мощность 	(1) k	:W 2,	59 2,5	4 3,3	3,98	4,26
Явная холодильная мощность		:W 2,	03 2	2,71	3,21	3,56
Расход воды	(1) I	/h 44	45 43	7 568	685	733
Падение давления воды		Pa 2	9 30	41	34	40
Тепловая мощность	(2) k	:W 2,	02 2,7	7 3,65	4,23	4,68
Расход воды		/h 34	47 47	628	655	805
Падение давления воды		Pa 34	1,9 31,	5 47,5	33,8	42,8
Полная потребляемая мощность блока		W 1	1 11	22	18	26
Минимальная скорость						
Расход воздуха		³ /h 40	00 413	590	634	717
• Холодильная мощность	(1) k	:W 2,	39 2,1	9 2,88	3,48	3,79
Явная холодильная мощность		:W 1,8	35 1,7	1 2,31	2,77	3,1
Расход воды		/h 4	11 37	7 495	599	652
Падение давления воды		Pa 25	5,4 23,	4 33	27,1	33,7
 Тепловая мощность 		:W 1,8	36 2,4	2 3,09	3,62	3,96
Расход воды		/h 32	20 410	5 531	561	681
Падение давления воды		Pa 30),2 25	1 35,7	26,3	33
Полная потребляемая мощность блока		W 1	0 9	15	13	18
Номинальное напряжение	V/r	°/Hz		220-240/1/5	0	
Тип приточного вентилятора	(3)	-		TGZ DC		
Количество приточных вентиляторов		-		1		
Н Уровень звукового давления	(4) df	3(A) 3	2 32	45	38	44
М Уровень звукового давления		3(A) 3	0 27	39	34	40
L Уровень звукового давления		B(A) 2	7 23	35	30	35
Н Уровень звуковой мощности		B(A) 4	4 44	57	50	56
М Уровень звуковой мощности		B(A) 4	2 39	51	46	52
L Уровень звуковой мощности		3(A) 3	9 35	47	42	47

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) N° 2016/2281, также известное как Ecodesign Lot21.

(1) входящей воды теплообменника 7°С (Температурный перепад 5°С) - Температура внешнего воздуха 27°С D.B. / 19°С W.B.

(2) входящей воды теплообменника 45°C (Температурный перепад 5°C) - Температура внешнего воздуха 20°C

(3) RAD DC = тангенциальный вентиляторт DC безщеточный

(4) Уровни шума измерялись в безэховой камере на двухтрубной системе. Уровень звукового давления измерялся на расстоянии 1 м от наружной поверхности модуля, работающего на открытой площадке.

аксессуары

KJR90X KJR-90D электронный термостат для монтажа на стену

KJR150X групповой контроллер внутренних блоков

ССМ30ВХ Центральный контроллер в корпусе

ССМ09 Проводной центральный пульт с недельным планировщиком

CCM-180A/WS Центральный контроллер для настенного монтажа с недельным таймером 6.2"

ССМ-270A/WS Центральный контроллер для настенного монтажа с недельным таймером 10.1"

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Для проверки совместимости различных опций обратитесь к техническому каталогу или нашему вэб-сайту к разделу "Системы и Продукты"

SAHU

Центральный кондиционер

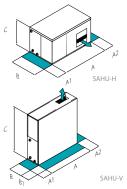
Вода

Установки в помещении, горизонтальные и вертикальные Канальный

Расход воздуха от 420 до 4200 л/с (от 1500 до 15000 m³/h)

- √ возможность работы с 2-х и 4-х трубными системами с регулировкой на борту или без;
- ✓ доступна в версии с прямым расширением для подключения к системе Clivet VRF и mini VRF;
- Стандарт с самонесущей сэндвич-панелью толщиной 40мм;
- ✓ Центробежные вентиляторы с ременной / шкивной передачей и конфигурируемыми двигателями тип IE2 с инвертором, IE3 с высоким напором для распределения воздуха через воздуховоды;
- √ конфигурируемый с EC-вентиляторами (IE4) с высокой распространенностью (стандартно со встроенной регулировкой);
- 4-х или 6-х рядная водяная катушка или 4 рядная прямая катушка расширения;
- ✓ широкий выбор аксессуаров (Смешивание коробки, фильтры, стенды, антивибрационные опоры и т.д.);
- ✓ дополнительные электронагреватели разной мощности;
- Удаленный и централизованный мониторинг системы с помощью INTELLIAIR

функции и характеристики



Горизонтальные Вертикальные

Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

PA3ME	P SAHU H / SAHU I	H_EC	1	2	3	4	_ 5	6	7	8
А - Длина		mm	780	880	1120	1280	1500	1720	1890	2510
В - Ширин	ia .	mm	1100	1100	1100	1300	1350	1350	1350	1350
С - Высота	3	mm	530	530	530	590	660	750	900	900
A1		mm	500	500	500	500	500	500	500	500
A2		mm	500	500	500	500	500	500	500	500
HC4	Macca	kg	78	85	98	134	167	202	274	330
H C6	Macca	kg	81	88	102	141	176	215	292	353
H E4	Macca	kg	78	84	97	133	165	199	270	326
H_EC C4	Macca	kg	57	63	74	101	132	163	211	268
H_EC C6	Macca	kg	60	66	78	108	141	176	229	291
H_EC E4	Macca	kg	57	62	73	100	130	160	207	264

PA3ME	P SAHU V / SAHU \	/_EC	1	2	3	4	5	6	7	8
А - Длина		mm	780	880	1120	1280	1500	1720	1890	2510
В - Ширин	ia .	mm	530	530	530	590	660	750	900	900
С - Высота	3	mm	1100	1100	1100	1300	1350	1570	1870	1950
A1		mm	500	500	500	500	500	500	500	500
A2		mm	500	500	500	500	500	500	500	500
B1		mm	1000	1000	1000	1000	1000	1000	1000	1000
V C4	Macca	kg	84	91	105	142	177	217	318	386
V C6	Macca	kg	87	94	109	149	186	230	336	409
V E4	Macca	kg	84	90	104	141	175	214	314	382
V_EC C4	Macca	kg	63	69	81	109	142	178	255	328
V_EC C6	Macca	kg	66	72	85	116	151	191	273	351
V_EC E4	Macca	kg	63	68	80	108	140	175	251	324

Вышеприведенные данные относятся к блоку в стандартном исполнении для указанной конструктивной конфигурации. Указанные веса относятся к единицам без воды / газа внутри батареи.

версии и конфигурации

НАПРЯЖЕНИЕ:

400T Напряжение питания 400/3~/50

Версия:

SAHU H Версия горизонтальной установки с центробежным вентилятором SAHU V Версия вертикальной установки с центробежным вентилятором

SAHU Н ЕСГоризонтальный тепловентилятор с ЕС вентилятором SAHU V EC Вертикальный тепловентилятор с EC вентилятором

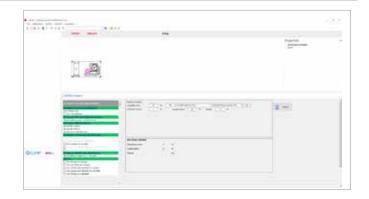
ОСНОВНАЯ БАТАРЕЯ:

C4 4-х рядная водяная катушка CB 6-х рядная водяная катушка

E4 4-х рядная батарея прямого расширения

ФИТИНГИ НА ВОДЯНЫЕ ТРУБОПРОВОДЫ:

Подключение воды с правой стороны SX Подключение воды с левой стороны


ГОРЯЧАЯ ВОДА ВТОРИЧНАЯ БАТАРЕЯ:

Дополнительный теплообменник горячей воды: не требуется (Стандартно)

CH1 1-х Вторичные горячей воды батареи CH2 2-х Вторичные горячей воды батареи

Выбор программного обеспечения

CTAPRO Воздуха единиц отбора программного обеспечения позволяет размер блока и сразу предлагают полное технические чертежи и технические спецификации.

технические характеристики

Разме	ep		SAHU	1	2	3	4	5	6	7	8
Расход в	воздуха		m³/h	1500	2090	2890	4020	5580	7750	10770	15000
C4	Холодильная мощность	(1)	kW	8,5	11,5	15,7	22,7	32,4	42,9	60,5	83,0
C4	Явная холодильная мощность	(1)	kW	6,2	8,5	11,7	16,6	23,4	31,7	44,3	61,1
C4	Расход воды	(1)	I/s	0,4	0,5	0,8	1,1	1,5	2,0	2,9	4,0
C6	Холодильная мощность	(1)	kW	10,3	13,8	19,4	26,6	37,9	50,3	70,9	99,2
C6	Явная холодильная мощность	(1)	kW	7,3	10,0	13,9	19,2	27,1	36,5	51,2	71,4
C6	Расход воды	(1)	l/s	0,5	0,7	0,9	1,3	1,8	2,4	3,4	4,7
E4	Холодильная мощность	(2)	kW	7,3	10,1	15,5	22,2	30,9	42,3	59,1	82,3
E4	Явная холодильная мощность	(2)	kW	5,8	8,0	11,6	16,5	22,9	31,4	43,8	60,9
C4	Тепловая мощность	(3)	kW	9,6	13,1	18,0	24,5	35,6	48,6	67,7	93,8
C4	Расход воды	(3)	I/s	0,5	0,6	0,9	1,2	1,7	2,3	3,3	4,5
C6	Тепловая мощность	(3)	kW	10,9	14,9	20,6	28,7	40,1	54,9	76,5	106,7
C6	Расход воды	(3)	l/s	0,5	0,7	1,0	1,4	1,9	2,6	3,7	5,2
блок пит	гания MAX (IE3 - CFG C&P)	(4)	kW	0,8	1,1	1,1	2,2	3,0	4,0	5,5	7,5
блок пит	гания MAX (IE4 - EC PLUG FAN)		kW	1,1	1,1	1,1	1,1	1,9	2,9	3,3	5,0
Номинал	льное напряжение		V/n°/Hz	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50	400/3~/50
Уровень	звукового давления	(5)	dB(A)	74	79	85	80	85	84	83	92

Оборудование соответствует европейской директиве Erp (Energy Related Products). Он включает в себя правила делегированные комиссией (EC) Nº 2016/2281, также известное

Ecodesign Lotz1.

(1) SAHU ГИДРОНИЧЕСКИЙ Охлаждение: входящей воды теплообменника 7°C (разность температур 5°C) Окружающий воздух 27°C D.B. / 19°C W.B. - ESP = 0 Pa

(2) SAHU ПРЯМОЕ РАСШИРЕНИЕ Охлаждение: Внутренняя температура 27°C D.B. / 19°C W.B. Температура испарителя 8°C / Температура конденсатора 46°C - ESP = 0 Pa - R410A

(3) SAHU ГИДРОНИЧЕСКИЙ Отопление: входящей воды теплообменника 45°С (Температурный перепад 5°C), Температура внешнего воздуха 20°C D.B., 50% U.R., ESP = 0 Pa (4) CFG C&P = Центробежный с ременной и шкивной передачей

(5) Уровни звукового давления относятся к агрегатам, работающим при номинальной нагрузке в номинальных условиях. Измерения проводятся в соответствии с UNI EN ISO 9614-1 при номинальном стандарте.

аксессуары

FS4	Рама с эффективными фильтрами G4, толщина 48 мм	AFRX	Вибровставка со стороны забора воздуха
FS5	Рама с эффективными фильтрами М5, толщина 98 мм	AFSX	Вибровставка со стороны подачи воздуха
FS6	Рама с эффективными фильтрами М6, толщина 98 мм	DARX	Заслонка со стороны забора воздуха
FS7	Рама с эффективными фильтрами F7, толщина 98 мм	FLRX	Фланец со стороны забора воздуха
FS8	Рама с эффективными фильтрами F8, толщина 98 мм	FLSX	Фланец со стороны подачи воздуха
FS9	Рама с эффективными фильтрами F9, толщина 98 мм	EC1X	Электронагреватель версии 1
FS45	Рама с эффективными фильтрами G4 то. 48 mm + M5 то. 98 mm	EC2X	Электронагреватель версии 2
FS46	Рама с эффективными фильтрами G4 то. 48 mm + M6 то. 98 mm	FTB	Коробка с клеммной колодкой для проводов центробежного
FS47	Рама с эффективными фильтрами G4 то. 48 mm + F7 то. 98 mm		вентилятора
FS48	Рама с эффективными фильтрами G4 то. 48 mm + F8 то. 98 mm	ETB	Коробка с клеммной колодкой для проводов ЕС штекер вентилятора
FS49	Рама с эффективными фильтрами G4 то. 48 mm + F9 то. 98 mm	KT4X	Запасные фильтры - G4 толщиной 48 мм
BAH	Подвал для горизонтального базового блока H=120 mm	KT5X	Запасные фильтры - М5 толщиной 98 мм
BAV	Подвал для вертикальной базы H=120 mm	KT6X	Запасные фильтры - М6 толщиной 98 мм
BAMX	Основание для камеры смешения Н=120 мм	KT7X	Запасные фильтры - F7 толщиной 98 мм
MBXX	Смесительная камера с заслонками	KT8X	Запасные фильтры - F8 толщиной 98 мм
AFMX	Антивибрационное крепление для клапана смесительной камеры	кт9х	Запасные фильтры - F9 толщиной 98 мм

Принадлежности, код которых заканчивается на "Х", поставляются отдельно

Для проверки совместимости различных опций обратитесь к техническому каталогу или нашему вэб-сайту к разделу "Системы и Продукты"

Центральный кондиционер

Для обработки воздуха Модульные секции Внутренняя и наружная установка

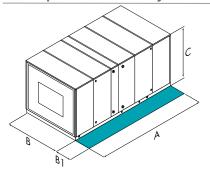
Расход воздуха от 350 до 44400 π/c (от 1260 до 160000 m^3/h)

- два типа конструкции и обшивки, 50 мм и 60 мм, которые позволяют достичь классов термического разрыва T2/TB3 и T2/TB2;
- ✓ 32 типоразмера с непрерывным воздушным потоком с поверхностной скоростью от 2,2 до 2,5 м/с;
- настройка размеров по высоте и ширине с шагом 50 мм в соответствии с самыми строгими архитектурными ограничениями;
- двухслойные панели типа "сэндвич" с тепло- и звукоизоляцией посередине из инжектированного полиуретана или минеральной ваты, термический разрез между листами, толщина 50 или 60 мм, в наличии семь различных типов листов;
- модульная конструкция с гладкими внутренними поверхностями для минимизации скопления пыли и облегчения очистки и дезинфекции;
- ✓ для внутренней или наружной установки с защитной крышей;
- широкий спектр решений для фильтрации воздуха от фильтров грубой очистки, фильтров средней очистки с жестким или гибким карманом, абсолютных, электронных, угольных фильтров, фильтров высокой и очень высокой эффективности;
- ✓ гермицидные и вируцидные растворы с ультрафиолетовыми лампами С или модулями фотокаталитического окисления;
- ✓ Пластинчатые, роторные, и гликолевые рекуператоры;
- ✓ Теплообменники, работающие с водой, фреоном, паром, маслом и электрические нагреватели;
- Системы адиабатического увлажнения, с парогенератором ил работающие от сетевого пара, а также оросительные камеры;
- Встроенные поддоны для сбора конденсата с противоконденсатной изоляцией, с наклоном в сторону слива, из алюминия или нержавеющей стали;
- Секции центробежных вентиляторов с ременным или прямым приводом, вытяжные радиальные вентиляторы с бесщеточными ЕС-двигателями;
- В комплекте с системой управления или только с датчиками, исполнительными механизмами, электропроводкой;
- ✓ Удаленный и централизованный мониторинг системы с помощью INTELLIAIR

CERTIFIED PERFORMANCE ANGUELLA STATEMENT OF THE STATEMENT

Компания Clivet участвует в программе ЕСР для "Воздухообрабатывающих совместимый агрегатов". Проверьте срок действия сертификата на сайте ErP www.eurovent-certification.com

функции и характеристики



Естественное INTELLIAIR охлаждение

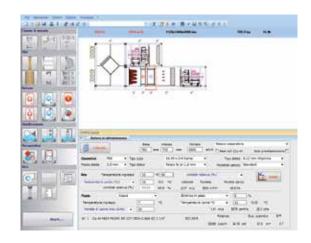
охлаждение установка установка охлаждение Размеры и зоны обслуживания

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными

(*) Длина А зависит от конфигурации секции.

(**) Рабочий вес зависит от конфигурации.


(***) Высота без учета рамы. Стандартная рама = 120 мм

Размеры относятся к модели с 50 мм структурой, добавьте 20 мм к указанным размерам, чтобы получить 60 мм структуру. Данные относятся к стандартному блоку.

PA3MEP	AQX	1	2	3	4	5	6	7	8	9	10	11
А - Длина	mm						(*)					
В - Ширина	mm	770	820	920	870	920	1020	970	1020	1170	1120	1220
С - Высота (***)	mm	570	570	620	720	720	720	820	820	820	920	920
В1 - Зона обслуж.												
для осмотра	mm	800	800	800	800	800	800	800	800	800	800	800
извлечение ТО	mm	964	1034	1024	1024	1094	1187	1194	1214	1324	1284	1394
Эксплуатационная масса	kg						(**)					
PA3MEP	AQX	12	13	14	15	16	17	18	19	20	21	22
А - Длина	mm						(*)					
В - Ширина	mm	1220	1370	1370	1570	1570	1620	1770	1820	2070	2120	2220
С - Высота (***)	mm	1070	1070	1170	1170	1320	1420	1420	1520	1520	1670	1770
В1 - Зона обслуж.												
для осмотра	mm	800	800	800	800	800	800	800	800	800	800	800
извлечение ТО	mm	1524	1504	1574	1734	1744	1774	1894	2094	2324	2264	2524
Эксплуатационная масса	kg						(**)					
PA3MEP	AQX	23	24	25	26	2	7 :	28	29	30	31	32
А - Длина	mm							(*)				
В - Ширина	mm	2370	2470	2620	2820	31	70 3	570	4020	4570	5170	5870
С - Высота (***)	mm	1920	2020	2120	2270	22	70 2	270	2270	2270	2270	2270
В1 - Зона обслуж.												
для осмотра	mm	800	800	800	800	80	00	300	800	800	800	800
извлечение ТО	mm	2524	2594	2744	3074	34	44 3	874	4364	4924	5564	6304
Эксплуатационная масса	kg							(**)				

Выбор программного обеспечения

Частотные преобразователи для вентиляторов

Вентиляционные установки гигиенического исполнения

Версия AQX Н предназначена для применений, требующих высоких гигиенических стандартов (фармацевтическая, больничная, пищевая и микроэлектронная промышленность). Он гарантирует максимальную чистоту и простоту обслуживания в соответствии со стандартами DIN 1946-4 и VDI 6022-1. Для получения более подробной информации обратитесь к специальной брошюре, отсканировав QR-код.

TOVILIALIOCKIAO	VADAUTODUCTIAVIA
технические	характеристики

	-												
Размер		AQX	1	2	3	4	5	6	7	8	9	10	11
D	(4)	I/s	414	473	544	624	714	816	938	1073	1223	1404	1602
Расход воздуха	(1)	m³/h	1490	1700	1960	2250	2570	2940	3380	3860	4400	5050	5770
Размер		AQX	12	13	14	15	16	17	18	19	20	21	22
Росков поотки	(1)	I/s	1838	2111	2412	2760	3159	3630	4156	4752	5445	6245	7156
Расход воздуха	(1)	m³/h	6620	7600	8680	9940	11370	13070	14960	17110	19600	22480	25760
Размер		AQX	23	24	25	26	27	,	28	29	30	31	32
Dagver peoples	(1)	l/s	8190	9383	10751	12315	1410)1	16167	18513	21191	24276	27821
Расход воздуха	(1)	m ³ /h	29480	33780	38700	44330	5076	60	58200	66650	76290	87390	100160

⁽¹⁾ Скорость воздуха в сечении теплообменника 2.5 м/с

аксессуары

Кондиционеры серии AQX доступны с широким спектром аксессуаров, которые могут быть выбраны непосредственно с

- ✓ помощью программного обеспечения.
- Несколько самых популярных аксессуаров:
- ✓ Всепогодная крыша и защита отсека управления
- ✓ Всепогодная крыша и защита соединений
- Устройство защиты движущихся компонентов

Осветительные пункты и инспекционные порты

Центральный кондиционер

Для обработки воздуха Модульные секции Внутренняя и наружная установка

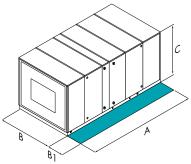
Расход воздуха от 350 до 44400 л/с (от 1260 до 160000 m³/h)

- два типа конструкции и обшивки, 50 мм и 60 мм, которые позволяют достичь классов термического разрыва T2/TB3 и T2/TB2;
- 32 типоразмера с непрерывным воздушным потоком с поверхностной скоростью от 2,2 до 2,5 м/с;
- настройка размеров по высоте и ширине с шагом 50 мм в соответствии с самыми строгими архитектурными ограничениями;
- двухслойные панели типа "сэндвич" с тепло- и звукоизоляцией посередине из инжектированного полиуретана или минеральной ваты, термический разрез между листами, толщина 50 или 60 мм, в наличии семь различных типов листов;
- модульная конструкция с гладкими внутренними поверхностями для минимизации скопления пыли и облегчения очистки и дезинфекции;
- для внутренней или наружной установки с защитной крышей;
- широкий спектр решений для фильтрации воздуха от фильтров грубой очистки, фильтров средней очистки с жестким или гибким карманом, абсолютных, электронных, угольных фильтров, фильтров высокой и очень высокой эффективности;
- гермицидные и вируцидные растворы с ультрафиолетовыми лампами С или модулями фотокаталитического окисления;
- ✓ Пластинчатые, роторные, и гликолевые рекуператоры;
- ✓ Теплообменники, работающие с водой, фреоном, паром, маслом и электрические нагреватели:
- Системы адиабатического увлажнения, с парогенератором работающие от сетевого пара, а также оросительные камеры;
- Встроенные поддоны для сбора конденсата с противоконденсатной изоляцией, с наклоном в сторону слива, из алюминия или нержавеющей стали;
- Секции центробежных вентиляторов с ременным или прямым приводом, вытяжные радиальные вентиляторы с бесщеточными ЕС-двигателями;
- В комплекте с системой управления или только с датчиками, исполнительными механизмами, электропроводкой;
- ✓ Удаленный и централизованный мониторинг системы с помощью INTELLIAIR

мести

ErP

функции и характеристики



Внутренняя Наружная охлаждение установка установка Размеры и зоны обслуживания

Естественное

охлаждение

ВНИМАНИЕ!

Для бесперебойной работы блока очень важно выдерживать расстояния, показанные зелеными зонами.

(*) Длина А зависит от конфигурации секции.

(**) Рабочий вес зависит от конфигурации

(***) Высота без учета рамы. Стандартная рама = 120 мм


Размеры относятся к модели с 50 мм структурой, добавьте 20 мм к указанным размерам, чтобы получить 60 мм структуру.

Данные относятся к стандартному блоку.

PA3MEP	CLA	1	2	3	4	5	6	7	8	9	10	11
А - Длина							(*)		0	_ 9	10	
	<u>mm</u> _	770	820	920	870	920	1020	970	1020	1170	1120	1220
В - Ширина	mm_											
С - Высота (***)	mm_	570	570	620	720	720	720	820	820	820	920	920
В1 - Зона обслуж.								200				
для осмотра	mm_	800	800	800	800	800	800	800	800	800	800	800
извлечение ТО	mm	964	1034	1024	1024	1094	1187	1194	1214	1324	1284	1394
Эксплуатационная масса	kg						(**)					
PA3MEP	CLA	12	13	14	15	16	17	18	19	20	21	22
А - Длина	mm						(*)					
В - Ширина	mm	1220	1370	1370	1570	1570	1620	1770	1820	2070	2120	2220
С - Высота (***)	mm	1070	1070	1170	1170	1320	1420	1420	1520	1520	1670	1770
В1 - Зона обслуж.												
для осмотра	mm	800	800	800	800	800	800	800	800	800	800	800
извлечение ТО	mm	1524	1504	1574	1734	1744	1774	1894	2094	2324	2264	2524
Эксплуатационная масса	kg						(**)					
PA3MEP	CLA	23	24	25	26	2	7 2	28	29	30	31	32
А - Длина	mm							(*)				
В - Ширина	mm	2370	2470	2620	2820	31	70 3!	570	4020	4570	5170	5870
С - Высота (***)	mm	1920	2020	2120	2270	22	70 2	270	2270	2270	2270	2270
В1 - Зона обслуж.												
для осмотра	mm	800	800	800	800	80	00 8	00	800	800	800	800
извлечение ТО	mm	2524	2594	2744	3074	4 34	44 3	874	4364	4924	5564	6304
Эксплуатационная масса	kg						(**)				

Выбор программного обеспечения

Частотные преобразователи для вентиляторов

технические характеристики

Размер	CLA	1	2	3	4	5	6	7	8	9	10	11
D	(1) I/s	414	473	544	624	714	816	938	1073	1223	1404	1602
Расход воздуха	(1) m ³ /h	1490	1700	1960	2250	2570	2940	3380	3860	4400	5050	5770

Размер	CLA	12	13	14	15	16	17	18	19	20	21	22
Danier	(1) I/s	1838	2111	2412	2760	3159	3630	4156	4752	5445	6245	7156
Расход воздуха	(1) m ³ /h	6620	7600	8680	9940	11370	13070	14960	17110	19600	22480	25760

Размер	CLA	23	24	25	26	27	28	29	30	31	32
D	(1) I/s	8190	9383	10751	12315	14101	16167	18513	21191	24276	27821
Расход воздуха	(1) m ³ /h	29480	33780	38700	44330	50760	58200	66650	76290	87390	100160

⁽¹⁾ Скорость воздуха в сечении теплообменника 2.5 м/с

аксессуары

Кондиционеры серии CLA доступны с широким спектром аксессуаров, которые могут быть выбраны непосредственно с помощью программного обеспечения.

аксессуаров, которые могут быть выбраны непосредственно с

- помощью программного обеспечения.
- ✓ Несколько самых популярных аксессуаров:
- ✓ Всепогодная крыша и защита отсека управления
- ✓ Всепогодная крыша и защита соединений
- ✓ Устройство защиты движущихся компонентов

Осветительные пункты и инспекционные порты

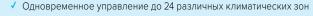
Все приложения

	CONTROL4 NRG	INTELLIPLANT	INTELLIAIR	Clivet Eye
	William H	usatti kista.	STATE OF THE PARTY	
Чиллер, Тепловой насос				
Многофункциональный чиллер		\		\
Установки для воздухообмена	\		\	/
Приточно-вытяжные установки	NEW			
Количество подключенных установок	1	10		1
Количество комнат подключенные блоки	50		20	1
Панель управления системой	✓		\	
Управление энергопотреблением	\	\	\	
Панель энергопотреблени, сообщения об ошибка и графики	\	\	\	
Внешний вид системы		\checkmark	\	
Диагностика по событиям	\	\	\	\
Профилактическая диагностика		✓	\	
Совместимо с Control4 NRG		✓		\
Совместимо с INTELLIPLANT	✓		\	
Совместимо с облачными сервисами	\	√		/

DIGITAL SOLUTIONS

DIGITAL Solutions

Элементы системы


СЕРИЯ	PA3MEP OT	до	НАИМЕНОВАНИЕ	СТР.
Системы управления				
Control4 NRG	-	-	Control4 NRG	164
INTELLIPLANT	-	-	INTELLIPLANT	166
INTELLIAIR	-	-	INTELLIAIR	168
Системы мониторинга				
Clivet Eye	-	-	Clivet Eye	170

DIGITAL SOLUTIONS

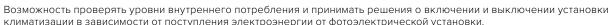
Control4 NRG

Control4 NRG

Assistente energetico per l'impianto di climatizzazione per applicazioni Smart Office e settore terziario

- Управление сценариями климатизации для различных условий работы и соответствующие группы настроек
- Управление класса A в соответствии с европейским стандартом EN15232
- Масштабируемая система для возможных расширений завода и интеграция контроля дополнительных пользователей
- ✓ Управление энергопотреблением с отображением данных о потреблении электроэнергии и внутреннем потреблении
- Опция удаленного мониторинга и управления системы через ПК или приложение
- ✓ Совместимость для взаимодействия с системой INTFITIPLANT

Вся система у вас под рукой


Control4 NRG - это централизованная система контроля и управления для гидравлических систем, используемых для охлаждения, отопления, производства горячей воды бытового потребления, а также для контроля качества воздуха в жилом пространстве и малом бизнесе.

Позволяет централизовать управление системами, построенных на совместимости устройств Clivet, интеллектуально управляя всеми элементами системы, чтобы получить оптимальные комфортные условия при максимальной эффективности.

Обеспечьте максимальную эффективность благодаря классу A

Control4 NRG обеспечивает максимальную энергоэффективность установки благодаря соответствию классу энергопотребления A согласно самым строгим требованиям к энергоэффективности зданий, установленным европейским стандартом UNI EN 15232 («Энергоэффективность зданий. Влияние средств автоматизации, регулировки и технического управления зданиями»).

В синергии с возобновляемыми источниками энергии

Control4 NRG рассчитан на интеграцию с самым передовым оборудованием, используемым для производства возобновляемой энергии, делая будущее все более чистым и экоустойчивым.

Он контролирует объемы энергии, производимые фотоэлектрической установкой и потребляемые климатизационной установкой, организуя отображение энергетических профилей в простом, интуитивно понятном виде.

Комфорт и качество воздуха

Control4 NRG позволяет управлять климатическими показателями в помещениях при использовании как традиционных установок с сезонно-реверсивной схемой (с 2 трубами), так и энергосберегающих систем нового поколения с рекуперацией тепла, в которых предусмотрена одновременная, независимая выработка энергии в режимах обогрева и охлаждения (схема с 4 трубами).

Control4 NRG позволяет управлять климатическими показателями в помещениях в том числе благодаря применению систем рециркуляции воздуха, поддерживая здоровую атмосферу, отвечающую самым строгим стандартам в области охраны здоровья людей.

Control4 NRG и системы рециркуляции Zephir от Clivet, помимо прочего, в межсезонье могут заменять собой установки с жидкостной теплопередачей, удовлетворяя потребности в теплоснабжении и таким образом обеспечивая дополнительное энергосбережение.

Идеально для всех секторов

Система предлагает максимальную гибкость использования благодаря количеству климатических зон, доступных как для нагрева, так и для охлаждения, ее интеграция с альтернативными источниками энергии, управление потреблением энергии и удаленного управления с помощью ПК или специального приложения.

Офисы Магазины Рестораны

Удаленный доступ и управление

Специальное приложение для удаленного доступа к системе Control4 NRG, мониторинга рабочих температур и доступа к основным функциям системы с ПК, смартфона или планшета при подключении к интернет-сети.

Clivet Eye идеально подходит для всех тех, кто хочет безопасно и эффективно управлять комфортом в своем офисе или на предприятии для благополучия людей, которые там работают.

HID-Tsmart

HID-TSmart расширяет концепцию термостата, представляя собой устройство нового поколения, с помощью которого можно получить доступ ко всей информации, необходимой для эффективного контроля за микроклиматом в помещении.

HID-TSmart обеспечивает простой, интуитивно понятный и немедленный доступ к основным рабочим параметрам системы. В сочетании с Control4 NRG с помощью одного и того же устройства вы можете получать различные типы информации, таких как температура, влажность, потребление электроэнергии, электроэнергия, вырабатываемая фотогальванической системой.

INTELLIPLANT

INTELLIPLANT

Система оптимизации для централизованных гидравлических систем

INTELLIPLANT - это инновационное технологическое решение, предназначенное для оптимизации системы центрального отопления средних и крупных электростанций, гарантирующее эффективность и надежность в любом контексте применения, от приложений в области комфорта до более сложных приложений для промышленных процессов, требующих непрерывности упражнения в любом рабочем состоянии.

INTELLIPLANT оптимизирует централизованные системы, используя алгоритмы управления устройствами, которые участвуют в производстве и распределении тепловой энергии, а также усовершенствованный механизм диагностических исследований, позволяющий определять состояние их обслуживания.

Контроль и оптимизация

INTELLIPLANT определяет наилучшую последовательность включения блоков, активируя их на основе их рабочих характеристик, удовлетворяя потребности системы в энергии с минимальным потреблением электроэнергии. INTELLIPLANT также оптимизирует насосные группы, чтобы обеспечить распределение жидкостей в первичном и вторичном контурах, управляя переменными расходами и одновременно снижая их энергопотребление.

Преимущества, вытекающие из этих стратегий контроля:

- ✓ высокий уровень эффективности установки
- ✓ сокращение отходов от перепроизводства энергии
- лучшая стабилизация системы с уменьшением термических и механических нагрузок на агрегаты.

Профилактическая диагностика

INTELLIPLANT развивает концепцию обслуживания, от обычного планового обслуживания до «технического обслуживания по состоянию», то есть персонализированного обслуживания каждой конкретной системы в зависимости от ее рабочего состояния.

Преимущества этой модели:

- ✓ сокращение количества вмешательств и выездов на территорию
- лучшее управление обслуживающим персоналом
- ✓ снижение затрат на обслуживание
- 🗸 сокращение времени простоя из-за внезапных сбоев
- ✓ увеличение продуктивности систем
- продление жизненного цикла устройств, используемых для производства и распределения тепловой энергии.

Энергия под контролем

- У INTELLIPLANT есть специальные страницы и отчеты, позволяющие отслеживать и контролировать энергопотребление установки, с функциями:
- ✓ анализ и нормализация энергопотребления устройств централизовано
- ✓ выявление критических вопросов по устранению отходов
- повышенный уровень комфорта
- ✓ увеличение непрерывности работы систем
- ✓ продвижение мероприятий по повышению общей эффективности установок.

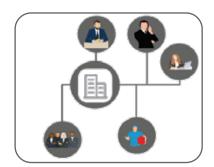
Функциональность и особенности

Сервис Clivet Облако предлагает возможность удаленного доступа к системе INTELLIPLANT и доступа ко всем ее функциям с любого ПК, смартфона или планшета, оснащенного веб-браузером, без необходимости установки какого-либо специального приложения.

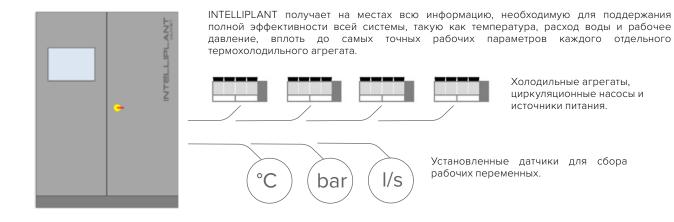
Панель управления системой

Панель приборов

INTELLIPLANT предоставляет пользователю большую коллекцию графических страниц, на которых собраны наиболее важные рабочие параметры блока управления и блоков для обеспечения полного управления механическими системами как локально, так и удаленно.


Все страницы можно просматривать как с ПК, так и со смарт-устройства.

Среди основных страниц мы находим:


- ✓ Панель управления системой с наиболее важными общими производственными данными
- ✓ Панель приборов со всеми рабочими переменными отдельных единиц
- 🗸 Панель управления энергопотреблением с показателями эффективности как системы, так и отдельной его части
- ✓ Панель мониторинга технического обслуживания с рабочими значениями компонентов системы и их рабочим состоянием
- ✓ Страница ввода в эксплуатацию, чтобы облегчить запуск и калибровку системы.

NTELLIPLANT - это решение обслуживания профессионалами, занимающихся проектированием, управлением и руководством технологическими системами:

- ✓ Консультанты и проектировщики систем HVAC
- Менеджеры по зданиям и объектам
- ✓ Энергоменеджеры
- ✓ ESCO
- ✓ Сервис-менеджеры и специалисты по обслуживанию
- ✓ Строители и установщики
- Инвесторы и владельцы систем

INTELLIPLANT - это гибкое, модульное и расширяемое решение, которое наилучшим образом удовлетворяет самые строгие структурные, прикладные и монтажные потребности в полном соответствии с требованиями безопасности и нормативными требованиями.

Система контроля кондиционирования воздуха

- Локальная И удаленная визуализация через специальную облачную платформу
- Оптимизация вентиляции с учетом качества воздуха
- Усовершенствованный планировщик для активации профилей энергии
- Система диагностического анализа для управления техническим обслуживанием
- Интеграция с BMS/BAS для оповещения о тревоге и управления

Сосредоточьтесь на комфорте

INTELLIAIR - это специальное решение от компании Clivet для контроля и управления системами кондиционирования воздуха во всех областях применения, где комфорт и энергоэффективность имеют первостепенное значение. Благодаря интеграции с автономными крышными кондиционерами (руфтопы) достигается высокий уровень оптимизации энергопотребления при обработке воздуха, обеспечивая при этом максимальный комфорт в помещениях.

Решение для диспетчеризации INTELLIAIR идеально подходит для:

- торговые центры
- многозальные кинотеатры, театры, зрительные залы
- коммерческие помещения и площади
- ✓ Сектор Хорика (HoReCa)

при использовании INTELLIAIR обеспечивается за счет автоматизированного управления независимыми зонами посредством адресного программирования каждого устройства, что устраняет потери и неэффективность, которые могут возникать в централизованных системах, без ущерба для комфорта.

Высокая адаптивность

INTELLIAIR представляет собой предварительно смонтированный и подключенный аппаратно-программный комплекс в шкафу управления, предназначенном для установки в диспетчерской или выделенном техническом помещении. 10-дюймовая сенсорная панель на блоке управления позволяет оператору просматривать все страницы, содержащие информацию о системе, за которой ведется наблюдение.

Все под контролем

Связь между INTELLIAIR, агрегатами Clivet и периферийными устройствами осуществляется по последовательной линии RS-485 с протоколом связи RTU Modbus, что упрощает подключение при больших расстояниях подключения. Кроме того, связь может осуществляться по протоколу Ethernet, что расширяет диапазон применения до агрегата Clivet с протоколом связи TCP/IP Modbus.

Помимо контроля температуры и влажности, уровень комфорта стал еще выше благодаря полной интеграции высокотехнологичных датчиков, которые отслеживают индекс качества воздуха в каждой определенной зоне.

ТЕМПЕРАТУРА

Датчики качества воздуха z-IAQ

соединения

CH4 Природный

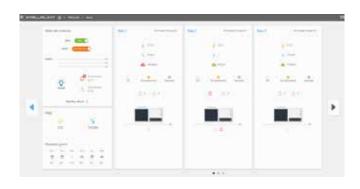
Диоксид азота

CO2 углерода

Относительная Температура

INTELLIAIR разработан для обеспечения полной совместимости со всеми BMS/BAS, тем самым обеспечивая полную открытость

INTELLIAIR предоставляет интуитивно понятную приборную панель, которая отображает всю информацию о режиме работы системы на картах, автоматически подстраивающихся под размер экрана на локальной панели оператора и на удаленном интерфейсе.


Планирование уровня комфорта

Программирование - одна из важнейших функций INTELLIAIR для автоматической работы системы. С помощью планировщика вы можете на протяжении всего года программировать нужный комфорт в различных зонах здания, чтобы поддерживать их комфорт независимо от других, тем самым устраняя потери и неэффективность, которые могут возникать в централизованных системах. Основными функциями являются:

- ✓ Ежедневное/годовое программирование температуры, влажности, уставки CO₂
- ✓ Обмен заданными значениями со всеми устройствами, входящими в эту зону
- Планирование технического обслуживания

От общего представления до отдельных деталей

Главная страница системы обеспечивает прямой доступ к различным функциям и отображает следующую основную информацию:

- 🗸 рабочее состояние системы и клавиши для быстрых действий
- ✓ процентное соотношение и режим работы отдельных агрегатов, по зонам
- ✓ состояние технического обслуживания после профилактического анализа каждого отдельного устройства
- ✓ сигналы тревоги первоочередного и второго уровня
- ✓ погода на текущий день и прогноз на ближайшие 7 дней

Более подробно, пользователь может получить доступ ко всем параметрам, относящимся к области или отдельным устройствам и их рабочим параметрам.

Процент и режим работы индивидуальных агрегатов, по зонам:

- 7-дневное расписание работы агрегатов, подключенных к этой зоне
- отображение и изменение заданной температуры помещении, относительной влажности и качества воздуха
- ✓ Статус сигнала аварий и специальные предупреждения для данной зоны
- комнатная температура, относительная влажность и качество воздуха за последние 12 часов

Для каждого устройства отображается следующая базовая информация:

- ✓ режим работы (нагрев / охлаждение / авто) и производительность устройства
- ✓ рабочее состояние (комфорт / Есо / выкл.)
- ✓ текущие значения температуры, относительной влажности и качества воздуха
- ✓ подробное состояние узлов (вентиляторы, компрессоры и т.д.)

Clivet Eye

Clivet Eye

Система мониторинга и диагностики для удаленного управления устройствами и системами Clivet

Clivet Eye это система мониторинга для дистанционного управления установками и системами кондиционирования, нагрева воздуха и производства горячей воды как для частного, так и для профессионального использования.

Предназначен для конечного пользователя, специалистов по контролю и профилактическому обслуживанию климатического оборудования.

Обзор всех систем

С помощью Clivet Eye вы можете контролировать и управлять всеми системами Clivet, расположенными по всей территории, даже если они разных типов.

Географическая карта Clivet Eye позволяет быстро, постоянно и в реальном времени наблюдать за всеми системами, выделяя рабочие условия простым и интуитивно понятным способом.

Уведомления о событиях оперативно предупреждают о любых сбоях в работе системы.

Clivet Eye представляет графическую страницу с информацией о расположении устройств и определяет их рабочее состояние с помощью системы "traffic light".

Это позволяет заранее определять рабочее состояние агрегатов и оперативно реагировать во избежание поломок и отключений системы.

Устройство работает Не требуется никаких действий

Устройство в режиме offline
Требуется проверка сетевого подключения

Неисправность без блокировки Требуется проверка рабочих параметров устройства для сохранения целостности системы и непрерывности работы

Блокирующий сигнал тревоги Требуется проверка состояния устройства для восстановления корректной работы

Основные характеристики

- ✓ Простое управление агрегатами / системами через приложение и веб-панель управления
- ✓ Оперативное сообщение о любых неисправностях благодаря уведомлениям о событиях по электронной почте
- ✓ Программирование рабочих условий путем программирования событий во временных диапазонах (включение, выключение, изменение рабочих установок)
- 🗸 Углубленный удаленный анализ и сброс небольших сигналов тревоги, которые ограничивают необходимость вмешательства на месте
- ✓ Более быстрое и эффективное вмешательство благодаря своевременному сообщению по электронной почте об аномальных операциях
- История анализов условий эксплуатации
- ✓ Проверка потребления электроэнергии и энергопотребления отдельных устройств (проверка совместимости с каждой моделью устройства)
- Расчет КПД отдельных агрегатов (проверка совместимости с каждой моделью устройства)
- Анализ качества воздуха (доступен для руфтопов, оснащенных датчиками качества воздуха)

Дополнительные функции

Мониторинг производительности

Clivet Eye получает значения потребления электрической энергии и потребления отдельных устройств и делает их доступными в графическом формате на простых и интуитивно понятных интерфейсах.

Civet Eye также точно рассчитывает эффективность работы устройства, тем самым позволяя специалистам проводить диагностические проверки на основе фактических условий работы, измеряемых в режиме реального времени ни

Индекс качества воздуха

Clivet Eye получает показатели качества воздуха в кондиционируемых помещениях руфтопами Clivet.

В графическом интерфейсе отображаются следующие значения:

- ✓ температура и влажность
- ✓ Индекс летучих органических соединений(VOC)
- √ двуокись углерода (CO₂)
- ✓ оксид углерода (CO)
- ✓ метан (CH₄)
- ✓ диоксид азота (NO₂)
- уровень окружающего шума (дБ)

Все измеряемые данные доступны в режиме реального времени и в формате графика с динамикой изменений во времени.

Подключаемые устройства

Гидравлические устройства для производства охлажденной и горячей воды, 4-трубные многофункциональные устройства, специализированные тепловые насосы для производства горячей воды высокой температуры

Руфтоп для кондиционирования воздуха в зданиях со средним и большим скоплением людей. Независимая основная вентиляционная установка

Вентиляционная установка

Для кого предназначен Clivet Eye?

Clivet Eye предназначен на конечных пользователей, руководителей установок, сервисных центров и, в целом, руководителей предприятий, которым необходимо удаленно контролировать работу предприятия.

КОНЕЧНЫЕ ПОЛЬЗОВАТЕЛИ

МЕНЕДЖЕРЫ СИСТЕМ

ОБСЛУЖИВАЮЩИЙ ПЕРСОНАЛ

©CLIVET / 171

НАЗВАНИЕ	PA3M. OT	ДО	ТИП	ГРУППА	СТР	НАЗВАНИЕ	PA3I	M. OT	ДО	ТИП	ГРУППА	СТР
AQX	1	32	-	TERMINAL Units AHU	158	WDAT-iZ4		120.1	580.2	SCREWLine ⁴ -i	HYDRONIC System	62
CFF	1	12	AURA	TERMINAL Units AHU	142	WDAT-SL3 FC		200.2	580.2	SCREWLine ³ FC	HYDRONIC System	66
CFFA	1	12	AURA	TERMINAL Units AHU	146	WDH-iK4		120.1	540.2	SCREWLine ⁴ -i	HYDRONIC System	86
CFK	007.0	041.0	ELFOSpace BOX3	TERMINAL Units AHU	150	WiDHN-KSL1 PL		140.2	360.2	SCREWLine ⁴ -i	HYDRONIC System	84
CFW-2	1	5	MOOD	TERMINAL Units AHU	154	WiSAN-P		14.1	30.2	THUNDER	HYDRONIC System	32
CKN-XHE2i	7.1	14.2	SMARTPack ²	PACKAGED System	102	WiSAN-YSE1		10.1	40.2	SHEEN EVO 2.0	HYDRONIC System	24
CLA	1	32	-	TERMINAL Units AHU	160	WiSAN-YEE1		45.4	85.4	Large EVO	HYDRONIC System	28
Clivet Eye	-	-	Clivet Eye	DIGITAL Solutions	170	WSAN-XEM HW		35.4	60.4	ELFOEnergy Magnum HW	HYDRONIC System	42
Control4 NRG	-	-	Control4 NRG	DIGITAL Solutions	164	WSAN-XEM MF		50.4	120.4	ELFOEnergy Magnum MF	HYDRONIC System	40
CiSDN-Y EF 1 S	Size 1	Size 3	Fresh Large EVO	PRIMARY AIR System	118	WSAN-XIN MF		18.2	45.2	ELFOEnergy Magnum MF	HYDRONIC System	38
CPAN-XHE3	Size 1	Size 6	ZEPHIR ³	PRIMARY AIR System	120	WSAN-YSC4		80.3	240.6	SPINchiller ⁴	HYDRONIC System	44
CRH-XHE2	14.2	110.4	CLIVETPack ²	WLHP System	134	WSAN-YSC4		260.8	480.12	SPINchiller ⁴	HYDRONIC System	50
CSRN-iY	20.2	28.2	CLIVETPack ³ⁱ	PACKAGED System	104	WSAN-YSC4 PL		90.4	265.6	SPINchiller ⁴	HYDRONIC System	48
CSRN-Y	20.2	56.4	CLIVETPack ³ⁱ	PACKAGED System	106	WSAN-YES		18.2	35.2	ELFOEnergy STORM EVO	HYDRONIC System	34
CSNX-iY	20.2	40.4	CLIVETPack ³ⁱ	PACKAGED System	110	WiSAT-YEE1		45.4	85.4	Large EVO	HYDRONIC System	28
CSRN-XHE2-FFA	12.2	24.4	CLIVETPack ² FFA	PACKAGED System	112	WiSAT-YEE1 FC		45.4	90.4	Large EVO FC	HYDRONIC System	30
EQV-X	5	21	VERSATEMP	WLHP System	128	WSAT-XSC3 FC		90.4	360.6	SPINchiller ³ FC	HYDRONIC System	54
EVH-X SPACE	2.1	12.1	VERSATEMP	WLHP System	132	WSAT-YES		18.2	35.2	ELFOEnergy STORM EVO	HYDRONIC System	34
EVH-X	5	17	VERSATEMP	WLHP System	130	WSAT-YES FC		18.2	35.2	ELFOEnergy STORM EVO FC	HYDRONIC System	36
INTELLIPLANT	-	-	INTELLIPLANT	DIGITAL Solutions	166	WSAT-YSi		16.2	40.2	ELFOEnergy Sheen EVO	HYDRONIC System	26
INTELLIAIR	-	-	INTELLIAIR	DIGITAL Solutions	168	WSAT-YSC4		80.3	240.6	SPINchiller ⁴	HYDRONIC System	44
MDE-SL3	120.1	580.2	SCREWLine ³	HYDRONIC System	96	WSAT-YSC4		265.6	350.8	SPINchiller ⁴	HYDRONIC System	52
MSE-XSC3	90.4	160.4	SPINchiller ³	HYDRONIC System	94	WSHH-LEE1		19.2	80.2	ELFOEnergy Ground Medium ² HW	HYDRONIC System	74
MSRN-XSC3 + CEV-X	T 90.4	160.4	Remotex	HYDRONIC System	56	WSHN-EE		17	121	ELFOEnergy Ground	HYDRONIC System	70
MSRT-XSC3 + CEV-XT	90.4	240.4	Remotex	HYDRONIC System	56	WSHN-XEE2		12.2	120.2	ELFOEnergy Ground Medium ²	HYDRONIC System	72
SAHU	1	8	SAHU	TERMINAL Units AHU	156	WSHN-XEE2 MF		12.2	80.2	ELFOEnergy Ground Medium ² MF	HYDRONIC System	76
WCH-i	250	550	Centrifugal Chiller	HYDRONIC System	92	WSHN-XSC3		70.4	120.4	SPINchiller ³	HYDRONIC System	80
WCH-iZ	230	450	Centrifugal Chiller	HYDRONIC System	90	WSH-XEE2		12.2	120.2	ELFOEnergy Ground Medium ²	HYDRONIC System	72
WDH-SB4	220.2	580.2	SCREWLine ⁴	HYDRONIC System	88	WSH-XSC3		70.4	120.4	SPINchiller ³	HYDRONIC System	80
WDAN-iK4 MF	220.2	420.2	SCREWLine ⁴ -i	HYDRONIC System	60	WSN-XEE		122	402	ELFOEnergy Duct Medium	HYDRONIC System	68
WDAT-iK4	120.1	580.2	SCREWLine ⁴ -i	HYDRONIC System	64							

В соответствии с регламентом 517/2014, информируем, что наша продукция содержит или работает с использование фторосодержащего газа R-410A (GWP 2087,5), R-134a (GWP 1430) и R-407C (GWP 1773,85).

Данные, содержащиеся в данном каталоге не являются окончательными и могут измениться производителем без предупреждения.

Воспроизведение каких-либо частей данной публикации запрещается Для просмотра обновленных данных, пожалуйста, посетите www.clivet.com

Действ. с января 2024 DG24L504RU-00

ЗА 30 МЫ ПРЕДЛАГАЕМ РЕШЕНИЯ ДЛЯ ОБЕСПЕЧЕНИЯ ПОСТОЯННОГО КОМФОРТА, БЛАГОПОЛУЧИЯ ЛЮДЕЙ И ОКРУЖАЮЩЕЙ СРЕДЫ

www.clivet.com

CLIVET S.p.A.

Via Camp Lonc 25, Z.I. Villapaiera 32032 - Feltre (BL) - Italy Tel. +39 0439 3131 - info@clivet.it

CLIVET GMBH

Hummelsbütteler Steindamm 84, 22851 Norderstedt, Germany Tel. +49 40 325957-0 - info.de@clivet.com

Clivet Group UK LTD

Units F5 & F6 Railway Triangle, Portsmouth, Hampshire PO6 1TG Tel. +44 02392 381235 -Enquiries@Clivetgroup.co.uk

CLIVET LLC

Office 508-511, Elektozavodskaya st. 24, Moscow, Russian Federation, 107023 Tel. +7495 6462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO) Headquarter Building, Office EG04-05, P.O Box-342009, Dubai, UAE Tel. +9714 5015840 - info@clivet.ae

Clivet South-East Europe d.o.o.

Jaruščica 9b 10000, Zagreb, Croatia Tel. +3851 222 8784 - info.see@clivet.com

CLIVET France SAS

6 Allée Kepler 77420 Champs sur Marne, France c.ahmed@clivet.com +33789352007

Clivet Airconditioning Systems Pvt Ltd

Office No.501 & 502,5th Floor, Commercial –I, Kohinoor City, Old Premier Compound, Off LBS Marg, Kirol Road, Kurla West, Mumbai Maharashtra 400070, India Tel. +91 22 30930200 - sales.india@clivet.com